Skip to main content
Log in

The regulation of the small-conductance calcium-activated potassium current and the mechanisms of sex dimorphism in J wave syndrome

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Apamin-sensitive small-conductance calcium-activated potassium (SK) current (IKAS) plays an important role in cardiac repolarization under a variety of physiological and pathological conditions. The regulation of cardiac IKAS relies on SK channel expression, intracellular Ca2+, and interaction between SK channel and intracellular Ca2+. IKAS activation participates in multiple types of arrhythmias, including atrial fibrillation, ventricular tachyarrhythmias, and automaticity and conduction abnormality. Recently, sex dimorphisms in autonomic control have been noticed in IKAS activation, resulting in sex-differentiated action potential morphology and arrhythmogenesis. This review provides an update on the Ca2+-dependent regulation of cardiac IKAS and the role of IKAS on arrhythmias, with a special focus on sex differences in IKAS activation. We propose that sex dimorphism in autonomic control of IKAS may play a role in J wave syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+-activated K+ channels: form and function. Annu Rev Physiol 74:245–269. https://doi.org/10.1146/annurev-physiol-020911-153336

    Article  CAS  PubMed  Google Scholar 

  2. Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AA (2016) J-wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge. Heart Rhythm 13:e295–e324. https://doi.org/10.1016/j.hrthm.2016.05.024

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bonilla IM, Long VP 3rd, Vargas-Pinto P, Wright P, Belevych A, Lou Q, Mowrey K, Yoo J, Binkley PF, Fedorov VV, Gyorke S, Janssen PM, Kilic A, Mohler PJ, Carnes CA (2014) Calcium-activated potassium current modulates ventricular repolarization in chronic heart failure. PLoS One 9:e108824. https://doi.org/10.1371/journal.pone.0108824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burashnikov A, Barajas-Martinez H, Hu D, Robinson VM, Grunnet M, Antzelevitch C (2020) The SK channel inhibitors NS8593 and UCL1684 prevent the development of atrial fibrillation via atrial-selective inhibition of sodium channel activity. J Cardiovasc Pharmacol Publish Ahead of Print. https://doi.org/10.1097/FJC.0000000000000855

  5. Chan YH, Tsai WC, Ko JS, Yin D, Chang PC, Rubart M, Weiss JN, Everett TH, Lin SF, Chen PS (2015) Small-conductance calcium-activated potassium current is activated during hypokalemia and masks short-term cardiac memory induced by ventricular pacing. Circulation 132:1377–1386. https://doi.org/10.1161/CIRCULATIONAHA.114.015125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang PC, Hsieh YC, Hsueh CH, Weiss JN, Lin SF, Chen PS (2013) Apamin induces early afterdepolarizations and torsades de pointes ventricular arrhythmia from failing rabbit ventricles exhibiting secondary rises in intracellular calcium. Heart Rhythm 10:1516–1524. https://doi.org/10.1016/j.hrthm.2013.07.003

    Article  PubMed  Google Scholar 

  7. Chang PC, Turker I, Lopshire JC, Masroor S, Nguyen BL, Tao W, Rubart M, Chen PS, Chen Z, Ai T (2013) Heterogeneous upregulation of apamin-sensitive potassium currents in failing human ventricles. J Am Heart Assoc 2:e004713. https://doi.org/10.1161/JAHA.112.004713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang SH, Chang SN, Hwang JJ, Chiang FT, Tseng CD, Lee JK, Lai LP, Lin JL, Wu CK, Tsai CT (2012) Significant association of rs13376333 in KCNN3 on chromosome 1q21 with atrial fibrillation in a Taiwanese population. Circ J 76:184–188. https://doi.org/10.1253/circj.cj-11-0525

    Article  CAS  PubMed  Google Scholar 

  9. Chen M, Xu DZ, Wu AZ, Guo S, Wan J, Yin D, Lin SF, Chen Z, Rubart-von der Lohe M, Everett THt QZ, Weiss JN, Chen PS (2018) Concomitant SK current activation and sodium current inhibition cause J wave syndrome. JCI Insight 3. https://doi.org/10.1172/jci.insight.122329

  10. Chen M, Yin D, Guo S, Xu DZ, Wang Z, Chen Z, Rubart-von der Lohe M, Lin SF, Everett Iv TH, Weiss JN, Chen PS (2018) Sex-specific activation of SK current by isoproterenol facilitates action potential triangulation and arrhythmogenesis in rabbit ventricles. J Physiol 596:4299–4322. https://doi.org/10.1113/JP275681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen WT, Chen YC, Lu YY, Kao YH, Huang JH, Lin YK, Chen SA, Chen YJ (2013) Apamin modulates electrophysiological characteristics of the pulmonary vein and the sinoatrial node. Eur J Clin Investig 43:957–963. https://doi.org/10.1111/eci.12125

    Article  CAS  Google Scholar 

  12. Choi EK, Park JH, Lee JY, Nam CM, Hwang MK, Uhm JS, Joung B, Ko YG, Lee MH, Lubitz SA, Ellinor PT, Pak HN (2015) Korean atrial fibrillation (AF) network: genetic variants for AF do not predict ablation success. J Am Heart Assoc 4:e002046. https://doi.org/10.1161/JAHA.115.002046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chua SK, Chang PC, Maruyama M, Turker I, Shinohara T, Shen MJ, Chen Z, Shen C, Rubart-von der Lohe M, Lopshire JC, Ogawa M, Weiss JN, Lin SF, Ai T, Chen PS (2011) Small-conductance calcium-activated potassium channel and recurrent ventricular fibrillation in failing rabbit ventricles. Circ Res 108:971–979. https://doi.org/10.1161/CIRCRESAHA.110.238386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Church TW, Weatherall KL, Correa SA, Prole DL, Brown JT, Marrion NV (2015) Preferential assembly of heteromeric small conductance calcium-activated potassium channels. Eur J Neurosci 41:305–315. https://doi.org/10.1111/ejn.12789

    Article  PubMed  Google Scholar 

  15. Dasari S, Hill C, Gulledge AT (2017) A unifying hypothesis for M1 muscarinic receptor signalling in pyramidal neurons. J Physiol 595:1711–1723. https://doi.org/10.1113/JP273627

    Article  CAS  PubMed  Google Scholar 

  16. Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, Dibb KM (2018) Calcium in the pathophysiology of atrial fibrillation and heart failure. Front Physiol 9:1380. https://doi.org/10.3389/fphys.2018.01380

    Article  PubMed  PubMed Central  Google Scholar 

  17. Diness JG, Kirchhoff JE, Sheykhzade M, Jespersen T, Grunnet M (2015) Antiarrhythmic effect of either negative modulation or blockade of small conductance Ca2+-activated K+ channels on ventricular fibrillation in Guinea pig Langendorff-perfused heart. J Cardiovasc Pharmacol 66:294–299. https://doi.org/10.1097/FJC.0000000000000278

    Article  CAS  PubMed  Google Scholar 

  18. Diness JG, Kirchhoff JE, Speerschneider T, Abildgaard L, Edvardsson N, Sorensen US, Grunnet M, Bentzen BH (2020) The KCa2 channel inhibitor AP30663 selectively increases atrial refractoriness, converts vernakalant-resistant atrial fibrillation and prevents its reinduction in conscious pigs. Front Pharmacol 11:159. https://doi.org/10.3389/fphar.2020.00159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Diness JG, Skibsbye L, Jespersen T, Bartels ED, Sorensen US, Hansen RS, Grunnet M (2011) Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition. Hypertension 57:1129–1135. https://doi.org/10.1161/HYPERTENSIONAHA.111.170613

    Article  CAS  PubMed  Google Scholar 

  20. Diness JG, Skibsbye L, Simo-Vicens R, Santos JL, Lundegaard P, Citerni C, Sauter DRP, Bomholtz SH, Svendsen JH, Olesen SP, Sorensen US, Jespersen T, Grunnet M, Bentzen BH (2017) Termination of vernakalant-resistant atrial fibrillation by inhibition of small-conductance Ca(2+)-activated K(+) channels in pigs. Circ Arrhythm Electrophysiol 10. https://doi.org/10.1161/CIRCEP.117.005125

  21. Diness JG, Sorensen US, Nissen JD, Al-Shahib B, Jespersen T, Grunnet M, Hansen RS (2010) Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation. Circ Arrhythm Electrophysiol 3:380–390. https://doi.org/10.1161/CIRCEP.110.957407

    Article  CAS  PubMed  Google Scholar 

  22. Ehdaie A, Cingolani E, Shehata M, Wang X, Curtis AB, Chugh SS (2018) Sex differences in cardiac arrhythmias: clinical and research implications. Circ Arrhythm Electrophysiol 11:e005680. https://doi.org/10.1161/CIRCEP.117.005680

    Article  PubMed  Google Scholar 

  23. Eisner DA, Vaughan-Jones RD (1983) Do calcium-activated potassium channels exist in the heart? Cell Calcium 4:371–386. https://doi.org/10.1016/0143-4160(83)90015-5

    Article  CAS  PubMed  Google Scholar 

  24. Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Ritchie MD, Smith AV, Arking DE, Muller-Nurasyid M, Krijthe BP, Lubitz SA, Bis JC, Chung MK, Dorr M, Ozaki K, Roberts JD, Smith JG, Pfeufer A, Sinner MF, Lohman K, Ding J, Smith NL, Smith JD, Rienstra M, Rice KM, Van Wagoner DR, Magnani JW, Wakili R, Clauss S, Rotter JI, Steinbeck G, Launer LJ, Davies RW, Borkovich M, Harris TB, Lin H, Volker U, Volzke H, Milan DJ, Hofman A, Boerwinkle E, Chen LY, Soliman EZ, Voight BF, Li G, Chakravarti A, Kubo M, Tedrow UB, Rose LM, Ridker PM, Conen D, Tsunoda T, Furukawa T, Sotoodehnia N, Xu S, Kamatani N, Levy D, Nakamura Y, Parvez B, Mahida S, Furie KL, Rosand J, Muhammad R, Psaty BM, Meitinger T, Perz S, Wichmann HE, Witteman JC, Kao WH, Kathiresan S, Roden DM, Uitterlinden AG, Rivadeneira F, McKnight B, Sjogren M, Newman AB, Liu Y, Gollob MH, Melander O, Tanaka T, Stricker BH, Felix SB, Alonso A, Darbar D, Barnard J, Chasman DI, Heckbert SR, Benjamin EJ, Gudnason V, Kaab S (2012) Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet 44:670–675. https://doi.org/10.1038/ng.2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ellinor PT, Lunetta KL, Glazer NL, Pfeufer A, Alonso A, Chung MK, Sinner MF, de Bakker PI, Mueller M, Lubitz SA, Fox E, Darbar D, Smith NL, Smith JD, Schnabel RB, Soliman EZ, Rice KM, Van Wagoner DR, Beckmann BM, van Noord C, Wang K, Ehret GB, Rotter JI, Hazen SL, Steinbeck G, Smith AV, Launer LJ, Harris TB, Makino S, Nelis M, Milan DJ, Perz S, Esko T, Kottgen A, Moebus S, Newton-Cheh C, Li M, Mohlenkamp S, Wang TJ, Kao WH, Vasan RS, Nothen MM, MacRae CA, Stricker BH, Hofman A, Uitterlinden AG, Levy D, Boerwinkle E, Metspalu A, Topol EJ, Chakravarti A, Gudnason V, Psaty BM, Roden DM, Meitinger T, Wichmann HE, Witteman JC, Barnard J, Arking DE, Benjamin EJ, Heckbert SR, Kaab S (2010) Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet 42:240–244. https://doi.org/10.1038/ng.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan HK, Luo TX, Zhao WD, Mu YH, Yang Y, Guo WJ, Tu HY, Zhang Q (2018) Functional interaction of Junctophilin 2 with small- conductance Ca(2+) -activated potassium channel subtype 2(SK2) in mouse cardiac myocytes. Acta Physiol (Oxford) 222. https://doi.org/10.1111/apha.12986

  27. Fan X, Yu Y, Lan H, Ou X, Yang L, Li T, Cao J, Zeng X, Li M (2018) Ca2+/calmodulin-dependent protein kinase II (CaMKII) increases small-conductance Ca2+-activated K+ current in patients with chronic atrial fibrillation. Med Sci Monit 24:3011–3023. https://doi.org/10.12659/MSM.909684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fei YD, Chen M, Guo S, Ueoka A, Chen Z, Rubart-von der Lohe M, Everett THt QZ, Weiss JN, Chen PS (2020) Simultaneous activation of the small conductance calcium activated potassium current by acetylcholine and inhibition of sodium current by ajmaline cause J-wave syndrome in Langendorff-perfused rabbit ventricles. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2020.07.036

  29. Grandi E, Sanguinetti MC, Bartos DC, Bers DM, Chen-Izu Y, Chiamvimonvat N, Colecraft HM, Delisle BP, Heijman J, Navedo MF, Noskov S, Proenza C, Vandenberg JI, Yarov-Yarovoy V (2017) Potassium channels in the heart: structure, function and regulation. J Physiol 595:2209–2228. https://doi.org/10.1113/JP272864

    Article  CAS  PubMed  Google Scholar 

  30. Grunnet M, Jensen BS, Olesen SP, Klaerke DA (2001) Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels. Pflugers Arch 441:544–550. https://doi.org/10.1007/s004240000447

    Article  CAS  PubMed  Google Scholar 

  31. Gui L, Bao Z, Jia Y, Qin X, Cheng ZJ, Zhu J, Chen QH (2013) Ventricular tachyarrhythmias in rats with acute myocardial infarction involves activation of small-conductance Ca2+-activated K+ channels. Am J Physiol Heart Circ Physiol 304:H118–H130. https://doi.org/10.1152/ajpheart.00820.2011

    Article  CAS  PubMed  Google Scholar 

  32. Hancock JM, Weatherall KL, Choisy SC, James AF, Hancox JC, Marrion NV (2015) Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes. Heart Rhythm 12:1003–1015. https://doi.org/10.1016/j.hrthm.2015.01.027

    Article  PubMed  Google Scholar 

  33. Haugaard MM, Hesselkilde EZ, Pehrson S, Carstensen H, Flethoj M, Praestegaard KF, Sorensen US, Diness JG, Grunnet M, Buhl R, Jespersen T (2015) Pharmacologic inhibition of small-conductance calcium-activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses. Heart Rhythm 12:825–835. https://doi.org/10.1016/j.hrthm.2014.12.028

    Article  PubMed  Google Scholar 

  34. Hill JA Jr, Coronado R, Strauss HC (1988) Reconstitution and characterization of a calcium-activated channel from heart. CircRes 62:411–415

    CAS  Google Scholar 

  35. Honrath B, Krabbendam IE, Culmsee C, Dolga AM (2017) Small conductance Ca(2+)-activated K(+) channels in the plasma membrane, mitochondria and the ER: pharmacology and implications in neuronal diseases. Neurochem Int 109:13–23. https://doi.org/10.1016/j.neuint.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  36. Hsu J, Gore-Panter S, Tchou G, Castel L, Lovano B, Moravec CS, Pettersson GB, Roselli EE, Gillinov AM, McCurry KR, Smedira NG, Barnard J, Van Wagoner DR, Chung MK, Smith JD (2018) Genetic control of left atrial gene expression yields insights into the genetic susceptibility for atrial fibrillation. Circ Genom Precis Med 11:e002107. https://doi.org/10.1161/CIRCGEN.118.002107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hsueh CH, Chang PC, Hsieh YC, Reher T, Chen PS, Lin SF (2013) Proarrhythmic effect of blocking the small conductance calcium activated potassium channel in isolated canine left atrium. Heart Rhythm 10:891–898. https://doi.org/10.1016/j.hrthm.2013.01.033

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ishii TM, Maylie J, Adelman JP (1997) Determinants of apamin and d-tubocurarine block in SK potassium channels. J Biol Chem 272:23195–23200. https://doi.org/10.1074/jbc.272.37.23195

    Article  CAS  PubMed  Google Scholar 

  39. Jeyaraj D, Wan X, Ficker E, Stelzer JE, Deschenes I, Liu H, Wilson LD, Decker KF, Said TH, Jain MK, Rudy Y, Rosenbaum DS (2013) Ionic bases for electrical remodeling of the canine cardiac ventricle. Am J Physiol Heart Circ Physiol 305:H410–H419. https://doi.org/10.1152/ajpheart.00213.2013

    Article  CAS  PubMed  Google Scholar 

  40. Kennedy M, Bers DM, Chiamvimonvat N, Sato D (2017) Dynamical effects of calcium-sensitive potassium currents on voltage and calcium alternans. J Physiol 595:2285–2297. https://doi.org/10.1113/JP273626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim TY, Terentyeva R, Roder KH, Li W, Liu M, Greener I, Hamilton S, Polina I, Murphy KR, Clements RT, Dudley SC Jr, Koren G, Choi BR, Terentyev D (2017) SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. Cardiovasc Res 113:343–353. https://doi.org/10.1093/cvr/cvx005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kirchhoff JE, Diness JG, Abildgaard L, Sheykhzade M, Grunnet M, Jespersen T (2016) Antiarrhythmic effect of the Ca(2+)-activated K(+) (SK) channel inhibitor ICA combined with either amiodarone or dofetilide in an isolated heart model of atrial fibrillation. Pflugers Arch 468:1853–1863. https://doi.org/10.1007/s00424-016-1883-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kirchhoff JE, Diness JG, Sheykhzade M, Grunnet M, Jespersen T (2015) Synergistic antiarrhythmic effect of combining inhibition of Ca(2)(+)-activated K(+) (SK) channels and voltage-gated Na(+) channels in an isolated heart model of atrial fibrillation. Heart Rhythm 12:409–418. https://doi.org/10.1016/j.hrthm.2014.12.010

    Article  PubMed  Google Scholar 

  44. Ko JS, Guo S, Hassel J, Celestino-Soper P, Lynnes TC, Tisdale JE, Zheng JJ, Taylor SE, Foroud T, Murray MD, Kovacs RJ, Li X, Lin SF, Chen Z, Vatta M, Chen PS, Rubart M (2018) Ondansetron blocks wild-type and p.F503L variant small-conductance Ca(2+)-activated K(+) channels. Am J Physiol Heart Circ Physiol 315:H375–H388. https://doi.org/10.1152/ajpheart.00479.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–1714

    Article  CAS  Google Scholar 

  46. Lancaster B, Nicoll RA (1987) Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol 389:187–203. https://doi.org/10.1113/jphysiol.1987.sp016653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Landaw J, Zhang Z, Song Z, Liu MB, Olcese R, Chen PS, Weiss JN, Qu Z (2020) Small-conductance Ca(2+)-activated K(+) channels promote J-wave syndrome and phase 2 reentry. Heart Rhythm 17:1582–1590. https://doi.org/10.1016/j.hrthm.2020.04.023

    Article  PubMed  Google Scholar 

  48. Lee YS, Chang PC, Hsueh CH, Maruyama M, Park HW, Rhee KS, Hsieh YC, Shen C, Weiss JN, Chen Z, Lin SF, Chen PS (2013) Apamin-sensitive calcium-activated potassium currents in rabbit ventricles with chronic myocardial infarction. J Cardiovasc Electrophysiol 24:1144–1153. https://doi.org/10.1111/jce.12176

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li N, Timofeyev V, Tuteja D, Xu D, Lu L, Zhang Q, Zhang Z, Singapuri A, Albert TR, Rajagopal AV, Bond CT, Periasamy M, Adelman J, Chiamvimonvat N (2009) Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol 587:1087–1100. https://doi.org/10.1113/jphysiol.2008.167718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li T, Fan X, Yu Y, Chen L, Huang W, Yang Y, Cao J, Zeng X, Tan X (2018) Synaptobrevin-2 facilitates the trafficking and function of atrial SK2 channel. Sci China Life Sci 61:599–603. https://doi.org/10.1007/s11427-017-9139-7

    Article  CAS  PubMed  Google Scholar 

  51. Ling TY, Wang XL, Chai Q, Lau TW, Koestler CM, Park SJ, Daly RC, Greason KL, Jen J, Wu LQ, Shen WF, Shen WK, Cha YM, Lee HC (2013) Regulation of the SK3 channel by microRNA-499-potential role in atrial fibrillation. Heart Rhythm 10:1001–1009. https://doi.org/10.1016/j.hrthm.2013.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ling TY, Yi F, Lu T, Wang XL, Sun X, Willis MS, Wu LQ, Shen WK, Adelman JP, Lee HC (2019) F-box protein-32 down-regulates small-conductance calcium-activated potassium channel 2 in diabetic mouse atria. J Biol Chem 294:4160–4168. https://doi.org/10.1074/jbc.RA118.003837

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu CH, Hua N, Fu X, Pan YL, Li B, Li XD (2018) Metformin regulates atrial SK2 and SK3 expression through inhibiting the PKC/ERK signaling pathway in type 2 diabetic rats. BMC Cardiovasc Disord 18:236. https://doi.org/10.1186/s12872-018-0950-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu L, Sirish P, Zhang Z, Woltz RL, Li N, Timofeyev V, Knowlton AA, Zhang XD, Yamoah EN, Chiamvimonvat N (2015) Regulation of gene transcription by voltage-gated L-type calcium channel, Cav1.3. J Biol Chem 290:4663–4676. https://doi.org/10.1074/jbc.M114.586883

    Article  CAS  PubMed  Google Scholar 

  55. Lu L, Zhang Q, Timofeyev V, Zhang Z, Young JN, Shin HS, Knowlton AA, Chiamvimonvat N (2007) Molecular coupling of a Ca2+-activated K+ channel to L-type Ca2+ channels via alpha-actinin2. Circ Res 100:112–120. https://doi.org/10.1161/01.RES.0000253095.44186.72

    Article  CAS  PubMed  Google Scholar 

  56. Lubberding AF, Sattler SM, Grunnet M, Sorensen US, Tfelt-Hansen J, Jespersen T (2019) Arrhythmia development during inhibition of small-conductance calcium-activated potassium channels in acute myocardial infarction in a porcine model. Europace 21:1584–1593. https://doi.org/10.1093/europace/euz223

    Article  PubMed  Google Scholar 

  57. Luo Z, Yan C, Zhang W, Shen X, Zheng W, Chen F, Cao X, Yang Y, Lin X, Wang Z, Huang M (2014) Association between SNP rs13376333 and rs1131820 in the KCNN3 gene and atrial fibrillation in the Chinese Han population. Clin Chem Lab Med 52:1867–1873. https://doi.org/10.1515/cclm-2014-0491

    Article  CAS  PubMed  Google Scholar 

  58. Mahida S, Mills RW, Tucker NR, Simonson B, Macri V, Lemoine MD, Das S, Milan DJ, Ellinor PT (2014) Overexpression of KCNN3 results in sudden cardiac death. Cardiovasc Res 101:326–334. https://doi.org/10.1093/cvr/cvt269

    Article  CAS  PubMed  Google Scholar 

  59. Maruyama M, Joung B, Tang L, Shinohara T, On YK, Han S, Choi EK, Kim DH, Shen MJ, Weiss JN, Lin SF, Chen PS (2010) Diastolic intracellular calcium-membrane voltage coupling gain and postshock arrhythmias: role of purkinje fibers and triggered activity. Circ Res 106:399–408. https://doi.org/10.1161/CIRCRESAHA.109.211292

    Article  CAS  PubMed  Google Scholar 

  60. Milman A, Gourraud JB, Andorin A, Postema PG, Sacher F, Mabo P, Conte G, Giustetto C, Sarquella-Brugada G, Hochstadt A, Kim SH, Juang JJM, Maeda S, Takahashi Y, Kamakura T, Aiba T, Leshem E, Michowitz Y, Rahkovich M, Mizusawa Y, Arbelo E, Huang Z, Denjoy I, Wijeyeratne YD, Napolitano C, Brugada R, Casado-Arroyo R, Champagne J, Calo L, Tfelt-Hansen J, Priori SG, Takagi M, Veltmann C, Delise P, Corrado D, Behr ER, Gaita F, Yan GX, Brugada J, Leenhardt A, Wilde AAM, Brugada P, Kusano KF, Hirao K, Nam GB, Probst V, Belhassen B (2018) Gender differences in patients with Brugada syndrome and arrhythmic events: data from a survey on arrhythmic events in 678 patients. Heart Rhythm 15:1457–1465. https://doi.org/10.1016/j.hrthm.2018.06.019

    Article  PubMed  Google Scholar 

  61. Mizukami K, Yokoshiki H, Mitsuyama H, Watanabe M, Tenma T, Takada S, Tsutsui H (2015) Small-conductance Ca2+-activated K+ current is upregulated via the phosphorylation of CaMKII in cardiac hypertrophy from spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 309:H1066–H1074. https://doi.org/10.1152/ajpheart.00825.2014

    Article  CAS  PubMed  Google Scholar 

  62. Monaghan AS, Benton DC, Bahia PK, Hosseini R, Shah YA, Haylett DG, Moss GW (2004) The SK3 subunit of small conductance Ca2+-activated K+ channels interacts with both SK1 and SK2 subunits in a heterologous expression system. J Biol Chem 279:1003–1009. https://doi.org/10.1074/jbc.M308070200

    Article  CAS  PubMed  Google Scholar 

  63. Mu YH, Zhao WC, Duan P, Chen Y, Zhao WD, Wang Q, Tu HY, Zhang Q (2014) RyR2 modulates a Ca2+-activated K+ current in mouse cardiac myocytes. PLoS One 9:e94905. https://doi.org/10.1371/journal.pone.0094905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Muse ED, Wineinger NE, Spencer EG, Peters M, Henderson R, Zhang Y, Barrett PM, Rivera SP, Wohlgemuth JG, Devlin JJ, Shiffman D, Topol EJ (2018) Validation of a genetic risk score for atrial fibrillation: a prospective multicenter cohort study. PLoS Med 15:e1002525. https://doi.org/10.1371/journal.pmed.1002525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ni Y, Wang T, Zhuo X, Song B, Zhang J, Wei F, Bai H, Wang X, Yang D, Gao L, Ma A (2013) Bisoprolol reversed small conductance calcium-activated potassium channel (SK) remodeling in a volume-overload rat model. Mol Cell Biochem 384:95–103. https://doi.org/10.1007/s11010-013-1785-5

    Article  CAS  PubMed  Google Scholar 

  66. Olesen MS, Jabbari J, Holst AG, Nielsen JB, Steinbruchel DA, Jespersen T, Haunso S, Svendsen JH (2011) Screening of KCNN3 in patients with early-onset lone atrial fibrillation. Europace 13:963–967. https://doi.org/10.1093/europace/eur007

    Article  PubMed  Google Scholar 

  67. Ortega A, Tarazon E, Rosello-Lleti E, Gil-Cayuela C, Lago F, Gonzalez-Juanatey JR, Cinca J, Jorge E, Martinez-Dolz L, Portoles M, Rivera M (2015) Patients with dilated cardiomyopathy and sustained monomorphic ventricular tachycardia show up-regulation of KCNN3 and KCNJ2 genes and CACNG8-linked left ventricular dysfunction. PLoS One 10:e0145518. https://doi.org/10.1371/journal.pone.0145518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ozgen N, Dun W, Sosunov EA, Anyukhovsky EP, Hirose M, Duffy HS, Boyden PA, Rosen MR (2007) Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Cardiovasc Res 75:758–769. https://doi.org/10.1016/j.cardiores.2007.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Parajuli N, Valtuille L, Basu R, Famulski KS, Halloran PF, Sergi C, Oudit GY (2015) Determinants of ventricular arrhythmias in human explanted hearts with dilated cardiomyopathy. Eur J Clin Investig 45:1286–1296. https://doi.org/10.1111/eci.12549

    Article  CAS  Google Scholar 

  70. Qi XY, Diness JG, Brundel BJ, Zhou XB, Naud P, Wu CT, Huang H, Harada M, Aflaki M, Dobrev D, Grunnet M, Nattel S (2014) Role of small-conductance calcium-activated potassium channels in atrial electrophysiology and fibrillation in the dog. Circulation 129:430–440. https://doi.org/10.1161/CIRCULATIONAHA.113.003019

    Article  CAS  PubMed  Google Scholar 

  71. Rafizadeh S, Zhang Z, Woltz RL, Kim HJ, Myers RE, Lu L, Tuteja D, Singapuri A, Bigdeli AA, Harchache SB, Knowlton AA, Yarov-Yarovoy V, Yamoah EN, Chiamvimonvat N (2014) Functional interaction with filamin A and intracellular Ca2+ enhance the surface membrane expression of a small-conductance Ca2+-activated K+ (SK2) channel. Proc Natl Acad Sci U S A 111:9989–9994. https://doi.org/10.1073/pnas.1323541111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Reher TA, Wang Z, Hsueh CH, Chang PC, Pan Z, Kumar M, Patel J, Tan J, Shen C, Chen Z, Fishbein MC, Rubart M, Boyden P, Chen PS (2017) Small-conductance calcium-activated potassium current in normal rabbit cardiac Purkinje cells. J Am Heart Assoc 6:6. https://doi.org/10.1161/JAHA.117.005471

    Article  Google Scholar 

  73. Salama G, Bett GC (2014) Sex differences in the mechanisms underlying long QT syndrome. Am J Physiol Heart Circ Physiol 307:H640–H648. https://doi.org/10.1152/ajpheart.00864.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Saljic A, Muthukumarasamy KM, la Cour JM, Boddum K, Grunnet M, Berchtold MW, Jespersen T (2019) Impact of arrhythmogenic calmodulin variants on small conductance Ca(2+) -activated K(+) (SK3) channels. Phys Rep 7:e14210. https://doi.org/10.14814/phy2.14210

    Article  CAS  Google Scholar 

  75. Sanchez-Alonso JL, Bhargava A, O’Hara T, Glukhov AV, Schobesberger S, Bhogal N, Sikkel MB, Mansfield C, Korchev YE, Lyon AR, Punjabi PP, Nikolaev VO, Trayanova NA, Gorelik J (2016) Microdomain-specific modulation of L-type calcium channels leads to triggered ventricular arrhythmia in heart failure. Circ Res 119:944–955. https://doi.org/10.1161/CIRCRESAHA.116.308698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shen MJ, Hao-Che C, Park HW, George Akingba A, Chang PC, Zheng Z, Lin SF, Shen C, Chen LS, Chen Z, Fishbein MC, Chiamvimonvat N, Chen PS (2013) Low-level vagus nerve stimulation upregulates small conductance calcium-activated potassium channels in the stellate ganglion. Heart Rhythm 10:910–915. https://doi.org/10.1016/j.hrthm.2013.01.029

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shen MJ, Shinohara T, Park HW, Frick K, Ice DS, Choi EK, Han S, Maruyama M, Sharma R, Shen C, Fishbein MC, Chen LS, Lopshire JC, Zipes DP, Lin SF, Chen PS (2011) Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation 123:2204–2212. https://doi.org/10.1161/CIRCULATIONAHA.111.018028

    Article  PubMed  PubMed Central  Google Scholar 

  78. Simo-Vicens R, Sauter DRP, Grunnet M, Diness JG, Bentzen BH (2017) Effect of antiarrhythmic drugs on small conductance calcium-activated potassium channels. Eur J Pharmacol 803:118–123. https://doi.org/10.1016/j.ejphar.2017.03.039

    Article  CAS  PubMed  Google Scholar 

  79. Skibsbye L, Bengaard AK, Uldum-Nielsen AM, Boddum K, Christ T, Jespersen T (2018) Inhibition of small conductance calcium-activated potassium (SK) channels prevents arrhythmias in rat atria during beta-adrenergic and muscarinic receptor activation. Front Physiol 9:510. https://doi.org/10.3389/fphys.2018.00510

    Article  PubMed  PubMed Central  Google Scholar 

  80. Skibsbye L, Diness JG, Sorensen US, Hansen RS, Grunnet M (2011) The duration of pacing-induced atrial fibrillation is reduced in vivo by inhibition of small conductance Ca(2+)-activated K(+) channels. J Cardiovasc Pharmacol 57:672–681. https://doi.org/10.1097/FJC.0b013e318217943d

    Article  CAS  PubMed  Google Scholar 

  81. Skibsbye L, Poulet C, Diness JG, Bentzen BH, Yuan L, Kappert U, Matschke K, Wettwer E, Ravens U, Grunnet M, Christ T, Jespersen T (2014) Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovasc Res 103:156–167. https://doi.org/10.1093/cvr/cvu121

    Article  CAS  PubMed  Google Scholar 

  82. Skibsbye L, Wang X, Axelsen LN, Bomholtz SH, Nielsen MS, Grunnet M, Bentzen BH, Jespersen T (2015) Antiarrhythmic mechanisms of SK channel inhibition in the rat atrium. J Cardiovasc Pharmacol 66:165–176. https://doi.org/10.1097/FJC.0000000000000259

    Article  CAS  PubMed  Google Scholar 

  83. Stowe DF, Gadicherla AK, Zhou Y, Aldakkak M, Cheng Q, Kwok WM, Jiang MT, Heisner JS, Yang M, Camara AK (2013) Protection against cardiac injury by small Ca(2+)-sensitive K(+) channels identified in Guinea pig cardiac inner mitochondrial membrane. Biochim Biophys Acta 1828:427–442. https://doi.org/10.1016/j.bbamem.2012.08.031

    Article  CAS  PubMed  Google Scholar 

  84. Strassmaier T, Bond CT, Sailer CA, Knaus HG, Maylie J, Adelman JP (2005) A novel isoform of SK2 assembles with other SK subunits in mouse brain. J Biol Chem 280:21231–21236. https://doi.org/10.1074/jbc.M413125200

    Article  CAS  PubMed  Google Scholar 

  85. Tenma T, Mitsuyama H, Watanabe M, Kakutani N, Otsuka Y, Mizukami K, Kamada R, Takahashi M, Takada S, Sabe H, Tsutsui H, Yokoshiki H (2018) Small-conductance Ca(2+)-activated K(+) channel activation deteriorates hypoxic ventricular arrhythmias via CaMKII in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 315:H262–H272. https://doi.org/10.1152/ajpheart.00636.2017

    Article  CAS  PubMed  Google Scholar 

  86. Terentyev D, Rochira JA, Terentyeva R, Roder K, Koren G, Li W (2014) Sarcoplasmic reticulum Ca(2)(+) release is both necessary and sufficient for SK channel activation in ventricular myocytes. Am J Physiol Heart Circ Physiol 306:H738–H746. https://doi.org/10.1152/ajpheart.00621.2013

    Article  CAS  PubMed  Google Scholar 

  87. Torrente AG, Zhang R, Wang H, Zaini A, Kim B, Yue X, Philipson KD, Goldhaber JI (2017) Contribution of small conductance K(+) channels to sinoatrial node pacemaker activity: insights from atrial-specific Na(+)/Ca(2+) exchange knockout mice. J Physiol 595:3847–3865. https://doi.org/10.1113/JP274249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tsai WC, Chan YH, Hsueh CH, Everett TH, Chang PC, Choi EK, Olaopa MA, Lin SF, Shen C, Kudela MA, Rubart-von der Lohe M, Chen Z, Jadiya P, Tomar D, Luvison E, Anzalone N, Patel VV, Chen PS (2016) Small conductance calcium-activated potassium current and the mechanism of atrial arrhythmia in mice with dysfunctional melanocyte-like cells. Heart Rhythm 13:1527–1535. https://doi.org/10.1016/j.hrthm.2016.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  89. Turker I, Yu CC, Chang PC, Chen Z, Sohma Y, Lin SF, Chen PS, Ai T (2013) Amiodarone inhibits apamin-sensitive potassium currents. PLoS One 8:e70450. https://doi.org/10.1371/journal.pone.0070450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tuteja D, Rafizadeh S, Timofeyev V, Wang S, Zhang Z, Li N, Mateo RK, Singapuri A, Young JN, Knowlton AA, Chiamvimonvat N (2010) Cardiac small conductance Ca2+-activated K+ channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Circ Res 107:851–859. https://doi.org/10.1161/CIRCRESAHA.109.215269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tuteja D, Xu D, Timofeyev V, Lu L, Sharma D, Zhang Z, Xu Y, Nie L, Vazquez AE, Young JN, Glatter KA, Chiamvimonvat N (2005) Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am J Physiol Heart Circ Physiol 289:H2714–H2723. https://doi.org/10.1152/ajpheart.00534.2005

    Article  CAS  PubMed  Google Scholar 

  92. Verkerk AO, Wilders R, de Geringel W, Tan HL (2006) Cellular basis of sex disparities in human cardiac electrophysiology. Acta Physiol (Oxford) 187:459–477. https://doi.org/10.1111/j.1748-1716.2006.01586.x

    Article  CAS  Google Scholar 

  93. Wan J, Chen M, Wang Z, Everett TH, Rubart-von der Lohe M, Shen C, Qu Z, Weiss JN, Boyden PA, Chen PS (2019) Small-conductance calcium-activated potassium current modulates the ventricular escape rhythm in normal rabbit hearts. Heart Rhythm 16:615–623. https://doi.org/10.1016/j.hrthm.2018.10.033

    Article  PubMed  Google Scholar 

  94. Wang S, Zhou X, Huang B, Wang Z, Zhou L, Chen M, Yu L, Jiang H (2016) Spinal cord stimulation suppresses atrial fibrillation by inhibiting autonomic remodeling. Heart Rhythm 13:274–281. https://doi.org/10.1016/j.hrthm.2015.08.018

    Article  PubMed  Google Scholar 

  95. Wu AZ, Chen M, Yin D, Everett TH, Chen Z, Rubart M, Weiss JN, Qu Z, Chen PS (2020) Sex-specific IKAS activation in rabbit ventricles with drug-induced QT prolongation. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2020.07.020

  96. Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507. https://doi.org/10.1038/26758

    Article  CAS  PubMed  Google Scholar 

  97. Xu Y, Tuteja D, Zhang Z, Xu D, Zhang Y, Rodriguez J, Nie L, Tuxson HR, Young JN, Glatter KA, Vazquez AE, Yamoah EN, Chiamvimonvat N (2003) Molecular identification and functional roles of a Ca(2+)-activated K+ channel in human and mouse hearts. J Biol Chem 278:49085–49094

    Article  CAS  Google Scholar 

  98. Xu Y, Tuteja D, Zhang Z, Xu D, Zhang Y, Rodriguez J, Nie L, Tuxson HR, Young JN, Glatter KA, Vazquez AE, Yamoah EN, Chiamvimonvat N (2003) Molecular identification and functional roles of a Ca(2+)-activated K+ channel in human and mouse hearts. J Biol Chem 278:49085–49094. https://doi.org/10.1074/jbc.M307508200

    Article  CAS  PubMed  Google Scholar 

  99. Yang D, Wang T, Ni Y, Song B, Ning F, Hu P, Luo L, Wang Y, Ma A (2015) Apamin-sensitive K+ current upregulation in volume-overload heart failure is associated with the decreased interaction of CK2 with SK2. J Membr Biol 248:1181–1189. https://doi.org/10.1007/s00232-015-9839-0

    Article  CAS  PubMed  Google Scholar 

  100. Yao JL, Zhou YF, Yang XJ, Qian XD, Jiang WP (2015) KCNN3 SNP rs13376333 on chromosome 1q21 confers increased risk of atrial fibrillation. Int Heart J 56:511–515. https://doi.org/10.1536/ihj.15-133

    Article  CAS  PubMed  Google Scholar 

  101. Yi F, Ling TY, Lu T, Wang XL, Li J, Claycomb WC, Shen WK, Lee HC (2015) Down-regulation of the small conductance calcium-activated potassium channels in diabetic mouse atria. J Biol Chem 290:7016–7026. https://doi.org/10.1074/jbc.M114.607952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yin D, Chen M, Yang N, Wu AZ, Xu D, Tsai WC, Yuan Y, Tian Z, Chan YH, Shen C, Chen Z, Lin SF, Weiss JN, Chen PS, Everett TH (2018) Role of apamin-sensitive small conductance calcium-activated potassium currents in long-term cardiac memory in rabbits. Heart Rhythm 15:761–769. https://doi.org/10.1016/j.hrthm.2018.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yin D, Yang N, Tian Z, Wu AZ, Xu D, Chen M, Kamp NJ, Wang Z, Shen C, Chen Z, Lin SF, Rubart-von der Lohe M, Chen PS, Everett TH (2020) Effects of ondansetron on apamin-sensitive small conductance calcium-activated potassium currents in pacing-induced failing rabbit hearts. Heart Rhythm 17:332–340. https://doi.org/10.1016/j.hrthm.2019.09.008

    Article  PubMed  Google Scholar 

  104. Yu CC, Ai T, Weiss JN, Chen PS (2014) Apamin does not inhibit human cardiac Na+ current, L-type Ca2+ current or other major K+ currents. PLoS One 9:e96691. https://doi.org/10.1371/journal.pone.0096691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yu CC, Chia-Ti T, Chen PL, Wu CK, Chiu FC, Chiang FT, Chen PS, Chen CL, Lin LY, Juang JM, Ho LT, Lai LP, Yang WS, Lin JL (2016) KCNN2 polymorphisms and cardiac tachyarrhythmias. Medicine (Baltimore) 95:e4312. https://doi.org/10.1097/MD.0000000000004312

    Article  CAS  Google Scholar 

  106. Yu CC, Corr C, Shen C, Shelton R, Yadava M, Rhea IB, Straka S, Fishbein MC, Chen Z, Lin SF, Lopshire JC, Chen PS (2015) Small conductance calcium-activated potassium current is important in transmural repolarization of failing human ventricles. Circ Arrhythm Electrophysiol 8:667–676. https://doi.org/10.1161/CIRCEP.114.002296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yu L, Wang S, Zhou X, Wang Z, Huang B, Liao K, Saren G, Chen M, Po SS, Jiang H (2016) Chronic intermittent low-level stimulation of tragus reduces cardiac autonomic remodeling and ventricular arrhythmia inducibility in a post-infarction canine model. JACC Clin Electrophysiol 2:330–339. https://doi.org/10.1016/j.jacep.2015.11.006

    Article  PubMed  Google Scholar 

  108. Yu T, Deng C, Wu R, Guo H, Zheng S, Yu X, Shan Z, Kuang S, Lin Q (2012) Decreased expression of small-conductance Ca2+-activated K+ channels SK1 and SK2 in human chronic atrial fibrillation. Life Sci 90:219–227. https://doi.org/10.1016/j.lfs.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  109. Yu Y, Luo D, Li Z, Zhang J, Li F, Qiao J, Yu F, Li M (2020) Inhibitory effects of dronedarone on small conductance calcium activated potassium channels in patients with chronic atrial fibrillation: comparison to amiodarone. Med Sci Monit 26:e924215. https://doi.org/10.12659/MSM.924215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang M, Meng XY, Cui M, Pascal JM, Logothetis DE, Zhang JF (2014) Selective phosphorylation modulates the PIP2 sensitivity of the CaM-SK channel complex. Nat Chem Biol 10:753–759. https://doi.org/10.1038/nchembio.1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang Q, Timofeyev V, Lu L, Li N, Singapuri A, Long MK, Bond CT, Adelman JP, Chiamvimonvat N (2008) Functional roles of a Ca2+-activated K+ channel in atrioventricular nodes. Circ Res 102:465–471. https://doi.org/10.1161/CIRCRESAHA.107.161778

    Article  CAS  PubMed  Google Scholar 

  112. Zhang XD, Coulibaly ZA, Chen WC, Ledford HA, Lee JH, Sirish P, Dai G, Jian Z, Chuang F, Brust-Mascher I, Yamoah EN, Chen-Izu Y, Izu LT, Chiamvimonvat N (2018) Coupling of SK channels, L-type Ca(2+) channels, and ryanodine receptors in cardiomyocytes. Sci Rep 8:4670. https://doi.org/10.1038/s41598-018-22843-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang XD, Timofeyev V, Li N, Myers RE, Zhang DM, Singapuri A, Lau VC, Bond CT, Adelman J, Lieu DK, Chiamvimonvat N (2014) Critical roles of a small conductance Ca(2)(+)-activated K(+) channel (SK3) in the repolarization process of atrial myocytes. Cardiovasc Res 101:317–325. https://doi.org/10.1093/cvr/cvt262

    Article  CAS  PubMed  Google Scholar 

  114. Zhang Z, Ledford HA, Park S, Wang W, Rafizadeh S, Kim HJ, Xu W, Lu L, Lau VC, Knowlton AA, Zhang XD, Yamoah EN, Chiamvimonvat N (2017) Distinct subcellular mechanisms for the enhancement of the surface membrane expression of SK2 channel by its interacting proteins, alpha-actinin2 and filamin A. J Physiol 595:2271–2284. https://doi.org/10.1113/JP272942

    Article  CAS  PubMed  Google Scholar 

  115. Zhou X, Zhou L, Wang S, Yu L, Wang Z, Huang B, Chen M, Wan J, Jiang H (2016) The use of noninvasive vagal nerve stimulation to inhibit sympathetically induced sinus node acceleration: a potential therapeutic approach for inappropriate sinus tachycardia. J Cardiovasc Electrophysiol 27:217–223. https://doi.org/10.1111/jce.12859

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 81900288), Shanghai Sailing Program, Shanghai, China (grant number 19YF1431900), the National Institutes of Health USA grants R01HL139829 and OT2OD028190, and the Burns and Allen Chair in Cardiology Research of the Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Sheng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Calcium Signal Dynamics in Cardiac Myocytes and Fibroblasts: Mechanisms in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Fei, Y., Chen, TZ. et al. The regulation of the small-conductance calcium-activated potassium current and the mechanisms of sex dimorphism in J wave syndrome. Pflugers Arch - Eur J Physiol 473, 491–506 (2021). https://doi.org/10.1007/s00424-020-02500-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02500-3

Keywords

Navigation