Skip to main content

Advertisement

Log in

Analysis and design of flux cancellation power-decoupling method for electrolytic-capacitorless three-phase cascaded multilevel inverters

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Cascaded multilevel inverter cells produce double-grid frequency ripples that require a large electrolytic capacitor bank for every cell, resulting in reduced system reliability and lifespan. This paper proposes a new generalized power-decoupling methodology that is applicable to any three-phase cascaded multilevel inverter topology. The proposed flux cancellation method is based on forcing a three-phase double-frequency ripple into the core of a three-phase transformer. The flux components from each phase, which are phase-shifted by 120°, cancel each other inside the core. Therefore, no power-decoupling capacitor is required in this method. A three-port bidirectional isolated converter is proposed to cancel the three-phase 120 Hz pulsating power in a single high-frequency (HF) core. High-leakage inductances and imbalances among the ports of a HF transformer are a topographical challenge. The imbalance in leakage inductances can be reduced by improving the winding schemes. However, increased leakage and imbalance among the three ports are unavoidable under high voltages because of the need for higher isolation. A universal solution involves the application of a phase shift-based controller to obtain balanced and reduced voltage ripples among the three DC links. This paper presents the dynamic analysis and controller design procedure. Results of the prototype hardware confirm the suitability of the proposed power-decoupling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Franquelo, L.G., Rodriguez, J., Leon, J.I., Kouro, S., Portillo, R., Prats, M.A.M.: The age of multilevel converters arrives. IEEE Ind. Electron. Mag. 2(2), 28–39 (2008)

    Article  Google Scholar 

  2. Manoharan, M.S., Ahmed, A., Park, J.: PV power conditioning system using nonregenerative single-sourced trinary asymmetric multilevel inverter with hybrid control scheme and reduced leakage current. IEEE Trans. Power Electron. 32(10), 7602–7614 (2017)

    Article  Google Scholar 

  3. Ahmed, A., Ran, L., Moon, S., Park, J.: A fast PV power tracking control algorithm with reduced power mode. IEEE Trans. Energy Convers. 28(3), 565–575 (2013)

    Article  Google Scholar 

  4. Jeon, Y., Lee, H., Kim, K.A., Park, J.: Least power point tracking method for photovoltaic differential power processing systems. IEEE Trans. Power Electron. 32(3), 1941–1951 (2017)

    Article  Google Scholar 

  5. Thang, T.V., Ahmed, A., Kim, C., Park, J.: Flexible system architecture of stand-alone PV power generation with energy storage device. IEEE Trans. Energy Convers. 30(4), 1386–1396 (2015)

    Article  Google Scholar 

  6. Camponogara, D., Ferreira, G.F., Campos, A., Dalla Costa, M.A., Garcia, J.: Offline LED driver for street lighting with an optimized cascade structure. IEEE Trans. Ind. Appl. 49(6), 2437–2443 (2013)

    Article  Google Scholar 

  7. Arias, M., Lamar, D.G., Sebastian, J., Balocco, D., Diallo, A.A.: High-efficiency LED driver without electrolytic capacitor for street lighting. IEEE Trans. Ind. Appl. 49(1), 127–137 (2013)

    Article  Google Scholar 

  8. Wang, S., Ruan, X., Yao, K., Tan, S., Yang, Y., Ye, Z.: A flicker-free electrolytic capacitor-less ac–dc led driver. IEEE Trans. Power Electron. 27(11), 4540–4548 (2012)

    Article  Google Scholar 

  9. Li, S., Zhu, G., Tan, S., Hui, S.Y.: Direct ac/dc rectifier with mitigated low-frequency ripple through inductor-current waveform control. IEEE Trans. Power Electron. 30(8), 4336–4348 (2015)

    Article  Google Scholar 

  10. Sun, Y., Liu, Y., Su, M., Xiong, W., Yang, J.: Review of active power decoupling topologies in single-phase systems. IEEE Trans. Power Electron. 31(7), 4778–4794 (2016)

    Google Scholar 

  11. Zhang, H., Li, X., Ge, B., Balog, R.S.: Capacitance, dc voltage utilization, and current stress: comparison of double-line frequency ripple power decoupling for single-phase systems. IEEE Ind. Electron. Mag. 11(3), 37–49 (2017)

    Article  Google Scholar 

  12. Vitorino, M.A., Alves, L.F.S., Wang, R., de Rossiter Corrêa, M.B.: Low-frequency power decoupling in single-phase applications: a comprehensive overview. IEEE Trans. Power Electron. 32(4), 2892–2912 (2017)

    Article  Google Scholar 

  13. Hu, H., Harb, S., Kutkut, N., Batarseh, I., Shen, Z.J.: A review of power decoupling techniques for microinverters with three different decoupling capacitor locations in PV systems. IEEE Trans. Power Electron. 28(6), 2711–2726 (2013)

    Article  Google Scholar 

  14. Cao, X., Zhong, Q.-C., Ming, W.-L.: Ripple eliminator to smooth dc-bus voltage and reduce the total capacitance required. IEEE Trans. Ind. Electron. 62(4), 2224–2235 (2015)

    Article  Google Scholar 

  15. Cai, W., Liu, B., Duan, S., Jiang, L.: An active low-frequency ripple control method based on the virtual capacitor concept for BIPV systems. IEEE Trans. Power Electron. 29(4), 1733–1745 (2014)

    Article  Google Scholar 

  16. Krein, P.T., Balog, R.S., Mirjafari, M.: Minimum energy and capacitance requirements for single-phase inverters and rectifiers using a ripple port. IEEE Trans. Power Electron. 27(11), 4690–4698 (2012)

    Article  Google Scholar 

  17. Irfan, M.S., Ahmed, A., Park, J.H., Seo, C.: Current-sensorless power-decoupling phase-shift dual-half-bridge converter for dc–ac power conversion systems without electrolytic capacitor. IEEE Trans. Power Electron. 32(5), 3610–3622 (2017)

    Article  Google Scholar 

  18. Tang, Y., Blaabjerg, F., Loh, P.C., Jin, C., Wang, P.: Decoupling of fluctuating power in single-phase systems through a symmetrical half-bridge circuit. IEEE Trans. Power Electron. 30(4), 1855–1864 (2015)

    Article  Google Scholar 

  19. Li, S., Qi, W., Tan, S.C., Hui, S.Y.: Integration of an active filter and a single-phase ac/dc converter with reduced capacitance requirement and component count. IEEE Trans. Power Electron. 31(6), 4121–4137 (2016)

    Article  Google Scholar 

  20. Huang, X., Zhang, K., Kan, J., Xiong, J.: Modified modular multilevel converter with submodule voltage fluctuation suppression. J. Power Electron. 17(4), 942–952 (2017)

    Google Scholar 

  21. Petrili, D., Nami, A., Townsend, C., De La Parra, H.Z.: Active ripple energy storage for a cascaded h-bridge multilevel converter. In: 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe), pp. 1–10. Karlsruhe. https://doi.org/10.1109/EPE.2016.7695612

  22. Kong, Z., Huang, X., Wang, Z., Xiong, J., Zhang, K.: Active power decoupling for submodules of a modular multilevel converter. IEEE Trans. Power Electron. 33(1), 125–136 (2018)

    Article  Google Scholar 

  23. Irfan, M.S., Ahmed, A., Park, J.H.: Power-decoupling of a multiport isolated converter for an electrolytic-capacitorless multilevel inverter. IEEE Trans. Power Electron. 33(8), 6656–6671 (2018)

    Article  Google Scholar 

  24. Yang, Z., Sun, J., Zha, X., Tang, Y.: Power decoupling control for capacitance reduction in cascaded h-bridge converter-based regenerative motor drive systems. Power Electron IEEE Trans. (2018). https://doi.org/10.1109/TPEL.2018.2818719

    Article  Google Scholar 

  25. Shi, Y., Li, R., Xue, Y., Li, H.: High-frequency-link-based grid-tied pv system with small dc-link capacitor and low-frequency ripple-free maximum power point tracking. IEEE Trans. Power Electron. 31(1), 328–339 (2016)

    Article  Google Scholar 

  26. Wang, J., Wang, P.: Power decoupling control for modular multilevel converter. IEEE Trans. Power Electron 33(11), 9296–9309 (2018)

    Article  Google Scholar 

  27. Diab, M.S., Massoud, A.M., Ahmed, S., Williams, B.W.: A modular multilevel converter with ripple-power decoupling channels for three-phase mv adjustable-speed drives. IEEE Trans. Power Electron 34(5), 4048–4063 (2019)

    Article  Google Scholar 

  28. Huang, X., Wang, Z., Kong, Z., Xiong, J., Zhang, K.: Modular multilevel converter with three-port power channels for medium-voltage drives. IEEE J. Emerg. Sel. Topics Power Electron. 6(3), 1495–1507 (2018)

    Article  Google Scholar 

  29. Chen, Y., Elasser, Y., Wang, P., Baek, J., Chen, M.: Turbo-MMC: minimizing the submodule capacitor size in modular multilevel converters with a matrix charge balancer. In: 2019 20th Workshop on Control and Modeling for Power Electronics (COMPEL), Toronto, pp. 1–8 (2019)

  30. Tao, H., Duarte, J.L., Hendrix, M.A.M.: Three-port triple-half-bridge bidirectional converter with zero-voltage switching. IEEE Trans. Power Electron. 23(2), 782–792 (2008)

    Article  Google Scholar 

  31. IGBT (5SNG 0250P330305) Datasheet: https://search.abb.com/library/Download.aspx?DocumentID=5SYA%20142601&LanguageCode=en&DocumentPartId=&Action=Launch. Accessed 23 Nov 2020

  32. Datasheet of Film Capacitor. https://www.tdk-electronics.tdk.com/inf/20/50/ds/MKP_DC_B2568X_ed2.pdf. Accessed 23 Nov 2020

  33. Hurley, W.G., Wölfle, W.H.: Transformers and inductors for power-electronics: theory, design and applications, 1st edn. Wiley, New York (2013)

    Book  Google Scholar 

  34. Iyer, K.V., Robbins, W.P., Mohan, N.: Winding design of a high power medium frequency transformer. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, 665–669 (2014)

  35. Ortiz, G., Biela, J., Kolar, J.W.: Optimized design of medium frequency transformers with high isolation requirements. IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, 631–638 (2010)

  36. Weblink for price of the IGBT module from Infineon. https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/fd1000r33hl3-k/. Accessed 23 Nov 2020

  37. Weblink for price of the IGBT module from Infineon. https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/ff450r33t3e3/. Accessed 23 Nov 2020

  38. Weblink for price of Film capacitor by Cornell Dubilier. https://www.mouser.in/Passive-Components/Capacitors/Film- Capacitors/_/N9x371? P=1ykkk42Z1z0wrkg&Keyword=163917370&FS=True&Ntk=P_MarCom. Accessed 23 Nov 2020

  39. Weblink for price of Electrolytic Capacitor by United Chemi-Con. https://www.digikey.com/en/products/detail/united-chemicon/ERHB701LGC222MEF5U/8568219. Accessed 23 Nov 2020

  40. Huber, J.E., Kolar, J.W.: Volume/weight/cost comparison of a 1MVA 10 kv/400 V solid-state against a conventional low-frequency distribution transformer. IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 4545–4552 (2014)

Download references

Acknowledgements

This research is financially supported by the National Research Foundation of Korea (NRF) funded through the Korea Government (MEST) under Grant NRF2019R1A2C108460511

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joung-Hu Park.

Appendix

Appendix

$$H_{{\rm RR1}} = \left( {\omega_{s} \frac{{L_{{\rm YB}1} L_{YR2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}} + \omega_{s} \frac{{\left( {L_{{\rm YB}1} L_{{\rm YY}} - L_{{\rm YY}}^{2} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}} \right),$$
$$H_{{\rm RR2}} = \frac{1}{{\pi L_{R} }}\frac{{L_{{\rm YB}1} L_{YR2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}\sin \left( {\emptyset_{R} } \right),$$
$$H_{{\rm RR3}} = \frac{1}{{\pi L_{R} }}\frac{{L_{{\rm YB}1} L_{YR2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}V_{dca} \cos \left( {\emptyset_{R} } \right),$$
$$H_{{\rm RR4}} = \left( {\omega_{s} \frac{{\left( { - L_{{\rm YB}1} L_{{\rm eq2}_{\rm Y}} + L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{RR}^{2} } \right)}} + \omega_{s} \frac{{\left( {L_{{\rm YB}1} L_{{\rm YY}} - L_{{\rm YY}}^{2} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}} \right),$$
$$H_{{\rm RR5}} = \frac{1}{{\pi L_{Y} }}\frac{{\left( { - L_{{\rm YB}1} L_{{\rm eq2}_{\rm Y}} + L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}\sin \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm RR6}} = \frac{1}{{\pi L_{b} }}\frac{{\left( { - L_{{\rm YB}1} L_{{\rm eq2}_{\rm Y}} + L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{RR}^{2} } \right)}}V_{dcY} \cos \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm RR7}} = \left( {\omega_{s} \frac{{ - L_{{\rm YY}} L_{{\rm YB}2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}} + \omega_{s} \frac{{\left( {L_{{\rm YB}1} L_{{\rm YY}} - L_{{\rm YY}}^{2} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}} \right),$$
$$H_{{\rm RR8}} = \frac{1}{{\pi L_{B} }}\frac{{ - L_{{\rm YY}} L_{{\rm YB}2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}\sin \left( {\emptyset_{B} } \right),$$
$$H_{{\rm RR9}} = \frac{1}{{\pi L_{cB} }}\frac{{ - L_{{\rm YY}} L_{{\rm YB}2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}V_{dcB} \cos \left( {\emptyset_{B} } \right),$$
$$H_{{\rm RI1}} = \left( { - \omega_{s} \frac{{L_{{\rm YB}1} L_{YR2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}} - \omega_{s} \frac{{\left( {L_{{\rm YB}1} L_{{\rm YY}} - L_{{\rm YY}}^{2} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}} \right),$$
$$H_{{\rm RI2}} = - \frac{1}{{\pi L_{R} }}\frac{{L_{{\rm YB}1} L_{YR2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}\cos \left( {\emptyset_{R} } \right),$$
$$H_{{\rm RI3}} = \frac{1}{{\pi L_{a} }}V_{dcR} \frac{{L_{{\rm YB}1} L_{YR2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}\sin \left( {\emptyset_{R} } \right) ,$$
$$H_{{\rm RI4}} = \left( { - \omega_{s} \frac{{\left( { - L_{{\rm YB}1} L_{{\rm eq2}_{\rm Y}} + L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{RR}^{2} } \right)}} - \omega_{s} \frac{{\left( {L_{{\rm YB}1} L_{{\rm YY}} - L_{{\rm YY}}^{2} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}} \right),$$
$$H_{{\rm RI5}} = - \frac{1}{{\pi L_{R} }}\frac{{\left( { - L_{{\rm YB}1} L_{{\rm eq2}_{\rm Y}} + L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{RR}^{2} } \right)}}\cos \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm RI6}} = \frac{1}{{\pi L_{B} }}\frac{{\left( { - L_{{\rm YB}1} L_{{\rm eq2}_{\rm Y}} + L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}V_{dcY} \sin \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm RI7}} = \left( {\omega_{s} \frac{{L_{{\rm YY}} L_{{\rm YB}2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}} - \omega_{s} \frac{{\left( {L_{{\rm YB}1} L_{{\rm YY}} - L_{{\rm YY}}^{2} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}} \right),$$
$$H_{{\rm RI8}} = \frac{1}{{\pi L_{B} }}\frac{{L_{{\rm YY}} L_{{\rm YB}2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}\cos \left( {\emptyset_{B} } \right) ,$$
$$H_{{\rm RI9}} = - \frac{1}{{\pi L_{B} }}\frac{{L_{{\rm YY}} L_{{\rm YB}2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}}V_{dcB} \sin \left( {\emptyset_{B} } \right) ,$$
$$H_{{\rm aRv1}} = - \frac{4}{\pi c}\sin \left( {\emptyset_{R} } \right),$$
$$H_{{\rm Rv2}} = \frac{4}{\pi c}\cos \left( {\emptyset_{R} } \right),$$
$$H_{{\rm Rv3}} = - \frac{2}{{R_{R} c}},$$
$$H_{{\rm Rv4}} = - \left( {\frac{4}{\pi c}I_{{pR - {\text{Re}} }} \cos \left( {\emptyset_{R} } \right) + \frac{4}{\pi c}I_{{pR - {\text{Im}} }} \sin \left( {\emptyset_{R} } \right)} \right),$$
$$H_{{\rm Rv5}} = \frac{2}{c},$$
$$H_{{\rm YR}1} = - \left( {z_{Y1} \omega_{s} + z_{Y4} \omega_{s} } \right),$$
$$H_{{\rm YR2}} = - z_{{\rm Yr}1} \frac{1}{{\pi L_{R} }}\sin \left( {\emptyset_{R} } \right),$$
$$H_{{\rm YR3}} = - z_{{\rm Yr}1} \frac{1}{{\pi L_{R} }}V_{{{\text{dcR}}}} \cos \left( {\emptyset_{R} } \right),$$
$$H_{{\rm YR4}} = - \left( {z_{{\rm Yr}2} \omega_{s} + z_{{\rm Yr}4} \omega_{s} } \right),$$
$$H_{{\rm YR5}} = - z_{{\rm Yr}2} \frac{1}{{\pi L_{Y} }}\sin \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm YR6}} = - z_{{\rm Yr}2} \frac{1}{{\pi L_{Y} }}V_{{{\text{dcY}}}} \cos \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm YR7}} = - \left( {z_{{\rm Yr}3} \omega_{s} + z_{{\rm Yr}4} \omega_{s} } \right),$$
$$H_{{\rm YR8}} = - z_{{\rm Yr}3} \frac{1}{{\pi L_{B} }}\sin \left( {\emptyset_{B} } \right),$$
$$H_{{\rm YR9}} = - z_{{\rm Yr}3} \frac{1}{{\pi L_{B} }}V_{dcc} \cos \left( {\emptyset_{B} } \right),$$
$$H_{{\rm YI1}} = \left( {z_{{\rm Yr}1} \omega_{s} + z_{{\rm Yr}4} \omega_{s} } \right),$$
$$H_{{\rm YI2}} = z_{{\rm Yr}1} \frac{1}{{\pi L_{R} }}\cos \left( {\emptyset_{R} } \right),$$
$$H_{{\rm YI3}} = - z_{{\rm Yr}1} \frac{1}{{\pi L_{R} }}V_{{{\text{dca}}}} \sin \left( {\emptyset_{R} } \right),$$
$$H_{{\rm YI4}} = \left( {z_{{\rm Yr}2} \omega_{s} + z_{{\rm Yr}4} \omega_{s} } \right),$$
$$H_{{\rm YI5}} = z_{{\rm Yr}2} \frac{1}{{\pi L_{Y} }}\cos \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm YI6}} = - z_{{\rm Yr}2} \frac{1}{{\pi L_{b} }}V_{{{\text{dcb}}}} \sin \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm YI7}} = \left( {z_{{\rm Yr}3} \omega_{s} + z_{{\rm Yr}4} \omega_{s} } \right),$$
$$H_{{\rm YI8}} = z_{{\rm Yr}3} \frac{1}{{\pi L_{B} }}\cos \left( {\emptyset_{B} } \right),$$
$$H_{{\rm YI9}} = - z_{{\rm Yr}3} \frac{1}{{\pi L_{B} }}V_{{{\text{dcB}}}} \sin \left( {\emptyset_{B} } \right),$$
$$H_{{\rm Yv1}} = - \frac{4}{\pi c}\sin \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm Yv2}} = \frac{4}{\pi c}\cos \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm Yv3}} = - \frac{2}{{R_{Y} c}},$$
$$H_{{\rm Yv4}} = - \left( {\frac{4}{\pi c}I_{{pY - {\text{Re}} }} \cos \left( {\emptyset_{Y} } \right) + \frac{4}{\pi c}I_{{pY - {\text{Im}} }} \sin \left( {\emptyset_{Y} } \right)} \right),$$
$$H_{{\rm Yv5}} = \frac{2}{c},$$
$$H_{{\rm BR1}} = \left( {\omega_{s} \frac{{L_{{\rm YY}} L_{YR2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}} + \omega_{s} \frac{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YY}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}} \right),$$
$$H_{{\rm BR2}} = \frac{1}{{\pi L_{R} }}\frac{{L_{{\rm YY}} L_{YR2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}\sin \left( {\emptyset_{R} } \right),$$
$$H_{{\rm BR3}} = \frac{1}{{\pi L_{a} }}\frac{{L_{{\rm YY}} L_{YR2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}V_{dcR} \cos \left( {\emptyset_{R} } \right),$$
$$H_{{\rm BR4}} = \left( {\omega_{s} \frac{{\left( {L_{{\rm YR}1} L_{{\rm eq2}_{\rm b}} - L_{{\rm YY}} L_{{\rm eq2}_{\rm b}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}} + \omega_{s} \frac{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YY}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}} \right),$$
$$H_{{\rm BR5}} = \frac{1}{{\pi L_{Y} }}\frac{{\left( {L_{{\rm YR}1} L_{{\rm eq2}_{\rm Y}} - L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}\sin \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm BR6}} = \frac{1}{{\pi L_{Y} }}\frac{{\left( {L_{{\rm YR}1} L_{{\rm eq2}_{\rm Y}} - L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}V_{{{\text{dcY}}}} \cos \left( {\emptyset_{Y} } \right),$$
$$H_{{\rm BR7}} = \left( {\omega_{s} \frac{{ - L_{{\rm YR}1} L_{{\rm YB}2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}} + \omega_{s} \frac{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YY}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}} \right),$$
$$H_{{\rm BR8}} = \frac{1}{{\pi L_{B} }}\frac{{ - L_{{\rm YR}1} L_{{\rm YB}2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}\sin \left( {\emptyset_{B} } \right),$$
$$H_{{\rm BR9}} = \frac{1}{{\pi L_{B} }}\frac{{ - L_{{\rm YR}1} L_{{\rm YB}2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}V_{{{\text{dcB}}}} \cos \left( {\emptyset_{B} } \right)$$
$$H_{{\rm BI1}} = \left( { - \omega_{s} \frac{{L_{{\rm YY}} L_{YR2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}} - \frac{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YY}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}\omega_{s} } \right)$$
$$H_{{\rm cBI2}} = - \frac{1}{{\pi L_{R} }}\frac{{L_{{\rm YY}} L_{YR2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}\cos \left( {\emptyset_{R} } \right)$$
$$H_{{\rm BI3}} = \frac{1}{{\pi L_{R} }}\frac{{L_{{\rm YY}} L_{YR2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}V_{{{\text{dcR}}}} \sin \left( {\emptyset_{R} } \right)$$
$$H_{{\rm BI4}} = \left( { - \omega_{s} \frac{{\left( {L_{{\rm YR}1} L_{{\rm eq2}_{\rm Y}} - L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}} - \frac{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YY}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}\omega_{s} } \right)$$
$$H_{{\rm YI5}} = - \frac{1}{{\pi L_{Y} }}\frac{{\left( {L_{{\rm YR}1} L_{{\rm eq2}_{\rm Y}} - L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}\cos \left( {\emptyset_{Y} } \right)$$
$$H_{{\rm BI6}} = \frac{1}{{\pi L_{Y} }}\frac{{\left( {L_{{\rm YR}1} L_{{\rm eq2}_{\rm Y}} - L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}V_{{{\text{dcY}}}} \sin \left( {\emptyset_{Y} } \right)$$
$$H_{{\rm BI7}} = \left( {\omega_{s} \frac{{L_{{\rm YR}1} L_{{\rm YB}2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}} - \frac{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YY}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}\omega_{s} } \right)$$
$$H_{{\rm BI8}} = \frac{1}{{\pi L_{B} }}\frac{{L_{{\rm YR}1} L_{{\rm YB}2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}\cos \left( {\emptyset_{B} } \right)$$
$$H_{{\rm BI9}} = - \frac{1}{{\pi L_{c} }}\frac{{L_{{\rm YR}1} L_{{\rm YB}2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}V_{{{\text{dcB}}}} \sin \left( {\emptyset_{B} } \right)$$
$$H_{{\rm Bv1}} = - \frac{4}{\pi c}\sin \left( {\emptyset_{B} } \right)$$
$$H_{{\rm Bv2}} = \frac{4}{\pi c}\cos \left( {\emptyset_{B} } \right)$$
$$H_{{\rm Bv3}} = - \frac{2}{{R_{B} c}}$$
$$H_{{\rm Bv4}} = - \left( {\frac{4}{\pi c}I_{{pB - {\text{Re}} }} \cos \left( {\emptyset_{B} } \right) + \frac{4}{\pi c}I_{{pB - {\text{Im}} }} \sin \left( {\emptyset_{B} } \right)} \right)$$
$$H_{{\rm Bv5}} = \frac{2}{c}$$
$$L_{{\rm eq1}_{\rm R}} = L_{R} \left( {\frac{1}{{L_{m} }} + \frac{1}{{L_{R} }}} \right)$$
$$L_{{\rm eq1}_{\rm Y}} = L_{Y} \left( {\frac{1}{{L_{m} }} + \frac{1}{{L_{Y} }}} \right)$$
$$L_{{\rm eq1}_{\rm B}} = L_{B} \left( {\frac{1}{{L_{m} }} + \frac{1}{{L_{B} }}} \right)$$
$$L_{{\rm eq2}_{\rm R}} = \frac{{L_{R} }}{{L_{m} }}$$
$$L_{{\rm eq2}_{\rm Y}} = \frac{{L_{Y} }}{{L_{m} }}$$
$$L_{{\rm eq2}_{\rm B}} = \frac{{L_{B} }}{{L_{m} }}$$
$$L_{{\rm YR}1} = \left( {L_{{\rm eq1}_{\rm Y}} L_{{\rm eq1}_{\rm R}} - 1} \right)$$
$$L_{{\rm YB}1} = \left( {L_{{\rm eq1}_{\rm Y}} L_{{\rm eq1_{\rm B}}} - 1} \right)$$
$$L_{{\rm RY2}} = L_{{\rm eq1}_{\rm Y}} L_{{\rm eq2_{\rm R}}}$$
$$L_{{\rm YB}2} = L_{{\rm eq1}_{\rm Y}} L_{{\rm eq2}_{\rm B}}$$
$$L_{{\rm YY}} = \left( {L_{{\rm eq1}_{\rm Y}} - 1} \right)$$
$$z_{{\rm Yr}1} = \frac{1}{{L_{{\rm eq1}_{\rm Y}} }}\left( {\frac{{L_{{\rm YB}1} L_{YR2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}} + \frac{{L_{{\rm YY}} L_{YR2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}} \right)$$
$$z_{{\rm Yr}2} = \frac{1}{{L_{{\rm eq1}_{\rm Y}} }}\left( {\frac{{\left( { - L_{{\rm YB}1} L_{{\rm eq2}_{\rm Y}} + L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}} + \frac{{\left( {L_{{\rm YR}1} L_{{\rm eq2}_{\rm Y}} - L_{{\rm YY}} L_{{\rm eq2}_{\rm Y}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}} - L_{{\rm eq2}_{\rm Y}} } \right)$$
$$z_{{\rm Yr}3} = \frac{1}{{L_{{\rm eq1}_{\rm Y}} }}\left( {\frac{{ - L_{{\rm YY}} L_{{\rm YB}2} }}{{\left( {L_{{\rm YB}1} L_{{\rm YR}1} - L_{{\rm YY}}^{2} } \right)}} + \frac{{ - L_{{\rm YR}1} L_{{\rm YB}2} }}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}}} \right)$$
$$z_{{\rm Yr}4} = \frac{1}{{L_{{\rm eq1}_{\rm Y}} }}\left( {\frac{{\left( {L_{{\rm bcYB1}} L_{{\rm bbYY}} - L_{{\rm bbYY}}^{2} } \right)}}{{\left( {L_{{\rm bcYB1}} L_{{\rm baYR1}} - L_{{\rm bbYY}}^{2} } \right)}} + \frac{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YY}} } \right)}}{{\left( {L_{{\rm YY}}^{2} - L_{{\rm YR}1} L_{{\rm YB}1} } \right)}} - 1} \right).$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M.S., Tawfik, M.A., Ahmed, A. et al. Analysis and design of flux cancellation power-decoupling method for electrolytic-capacitorless three-phase cascaded multilevel inverters. J. Power Electron. 21, 321–341 (2021). https://doi.org/10.1007/s43236-020-00196-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00196-3

Keywords

Navigation