Skip to main content
Log in

New control strategy for interleaved PFC rectifiers using Lyapunov function

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

The conventional current and voltage control methods of AC/DC power factor correction (PFC) rectifiers have been applied using proportional-integral (PI) or proportional-resonant controls. However, these approaches do not guarantee global stability at various operating points and are sensitive to disturbances, such as parameter or load variations. In this paper, a new control method is proposed based on the Lyapunov function that provides global stability and a fast response at various operating points. Experiments are conducted using an air conditioner with a 3 kW capacity. Experimental results are obtained and thoroughly analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(v_{in}\) :

Input voltage

\(i_{in} ,i_{in1} ,i_{in2}\) :

Input currents

\(i_{in}^{*} ,i_{in1}^{*} ,i_{in2}^{*}\) :

Target value of input currents

\(I_{m}\) :

Peak value of input currents

\(I_{m}^{*}\) :

Target peak value of input currents

\(V_{m}\) :

Peak value of input voltage

\(v_{{{\text{out}}}}\) :

Output voltage

\(v_{{{\text{out}}}} (t - T)\) :

Output voltage of the last cycle

\(T\) :

Pulsating period of output voltage

\(V_{{{\text{out}}}}^{*}\) :

Target value of output voltage

\(v_{{{\text{out}}\_{\text{avg}}}}\) :

Average value of output voltage

\(i_{{{\text{out}}\_{\text{avg}}}}\) :

Average value of output currents

\(\omega\) :

Angular velocity of grid voltage

\(\alpha\) :

Integral gain of voltage controller

\(L_{m}\) :

Inductance of filter inductor

\(C_{{{\text{out}}}}\) :

Capacitance of filter capacitor

\(p_{{{\text{in}}}}\) :

Input power

\(p_{{{\text{out}}}}\) :

Output power

\(p_{{{\text{out}}\_{\text{avg}}}}\) :

Average value of output power

\(p_{{{\text{charge}}}}\) :

Charging power for output capacitor

\(p_{{{\text{charge}}\_{\text{avg}}}}\) :

Average of charging power

\(k_{vp}\) :

Proportional gain of voltage controller

\(k_{vi}\) :

Integral gain of voltage controller

\(k_{ip}\) :

Proportional gain of current controller

\(k_{ii}\) :

Integral gain of current controller

References

  1. Li, W., He, X.: A family of interleaved DC-DC converters deduced from a basic cell with winding-cross-coupled inductors (WCCIs) for high step-up or step-down conversions. IEEE Trans. Power Electron. 23(4), 1791–1801 (2008)

    Article  Google Scholar 

  2. Yi, K.H., Moon, G.W.: Novel two-phase interleaved LLC series-resonant converter using a phase of the resonant capacitor. IEEE Trans. Ind. Electron. 56(5), 1815–1819 (2009)

    Article  Google Scholar 

  3. Lin, B. R., Yang, W. R., Chen, J. J., Huang, C. L.: Interleaved LLC series converter with output voltage doubler. In: Proceedings IEEE IPEC’10, pp. 92–98 (2010)

  4. Wu, X., Chen, H., Zhang, J., Peng, F.: Interleaved phase-shift full-bridge converter with transformer winding series-parallel auto regulated (SPAR) current doubler rectifier. IEEE Trans. Power Electron. 30(9), 4864–4873 (2015)

    Article  Google Scholar 

  5. Kim, S., Lee, K.: Robust feedback-linearizing output voltage regulator for DC/DC boost converter. IEEE Trans. Industr. Electron. 62(11), 7127–7135 (2015)

    Article  MathSciNet  Google Scholar 

  6. Hu, J., Shang, L., He, Y., Zhu, Z.Q.: Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach. IEEE Trans. Power Electron. 26(1), 210–222 (2011)

    Article  Google Scholar 

  7. Revathy, R., Senthil, N.K.: Design and evaluation of robust controller for AC-to-DC Boost converter. 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), Tamilnadu, 2011, pp. 405–410 (2011)

  8. Komurcugil, H., Altin, N., Ozdemir, S., Sefa, I.: An extended Lyapunov-function-based control strategy for single-phase UPS inverters. IEEE Trans. Power. Electron. 30, 3976–3983 (2015)

    Article  Google Scholar 

  9. Kato, T., Inoue, K., Ueda, M.: “Lyapunov-based digital control of grid-connected inverter with an LCL filter”, IEEE. J. Emerg. Sel. Top. Power Electron. 2, 942–948 (2014)

    Article  Google Scholar 

  10. Rahmani, S., Hamadi, A., Al-Haddad, K.: A Lyapunov-function-based control for a three-phase shunt hybrid active filter. IEEE Trans. Ind. Electron. 59, 1418–1429 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Woo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, IU., Bae, BK. & Choi, JW. New control strategy for interleaved PFC rectifiers using Lyapunov function. J. Power Electron. 21, 464–474 (2021). https://doi.org/10.1007/s43236-020-00202-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00202-8

Keywords

Navigation