Skip to main content
Log in

Hematite dysprosium oxide nanocomposites biosynthesized via greener route for ciprofloxacin removal and antimicrobial activity

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Fe2O3–Dy2O3 (FD) was synthesized via green approach using Syzygium aromaticum (Clove) bud extract, for the effective removal of an antibiotic ciprofloxacin. The formation of Fe2O3–Dy2O3 nanocomposite was confirmed by FTIR, XRD, XPS and EDS. A magnetic counterpart c-Fe2O3–Dy2O3 (c-FD) was obtained via calcinations of FD at 700 °C and tested for the CIP removal performance. BET surface area of the FD and c-FD was found to be 112 and 41 m2 g−1. Antibiotics have been emerged as an issue high concern due to their potential risk for ecosystem and human health. There is a crucial need for the development of efficient materials for the recovery of these pollutants from waste water. Aiming on this issue, the synthesized systems were tested for Ciprofloxacin removal. The maximum adsorption capacity of 125 and 328 mg g−1, for both FD and c-FD was obtained, respectively. The maximum percentage removal of CIP was found to be 70% for FD and 53% for c-FD at the adsorbent dose of 1 g L−1 within 90 min for 40 ppm initial concentration of CIP. The effect of FD and c-FD nanocomposites on bacterial strains reveals their specific effect on Gram-negative bacteria, Escherichia coli (E. coli). Further, the regeneration and recyclability of nanoadsorbents showed excellent cycling stability and recyclability given their robustness, which is advantageous for further application in water purification and treatment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kummerer, K.: Antibiotics in the aquatic environment—a review—part I. Chemosphere 75, 417–434 (2009)

    Article  PubMed  CAS  Google Scholar 

  2. Bilal, M., Mehmood, S., Rasheed, T., Iqbal, H.M.: Antibiotics traces in the aquatic environment: persistence and adverse environmental impact. Curr. Opin. Environ. Sci. Health 13, 68–74 (2020)

    Article  Google Scholar 

  3. Bilal, M., Rasheed, T., Mehmood, S., Tang, H., Ferreira, L.F.R., Bharagava, R.N., Iqbal, H.M.: Mitigation of environmentally-related hazardous pollutants from water matrices using nanocomposite d materials—a review. Chemosphere 253, 126770 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. Li, Z., Li, M., Zhang, Z., Li, P., Zang, Y., Liu, X.: Antibiotics in aquatic environments of China: a review and meta-analysis. Ecotoxicol. Environ. Saf. 199, 110668 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. Reygaert, W.C.: An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4(3), 482–501 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bilal, M., Ashraf, S.S., Barceló, D., Iqbal, H.M.: Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci. Total Environ. 691, 1190–1211 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. Correa, E.M.C., Franco, M.F.A., González, C.F.: Advanced oxidation processes for the removal of antibiotics from water. An overview. Water 12, 102–107 (2020)

    Article  CAS  Google Scholar 

  8. Tamaddon, F., Nasiri, A., Yazdanpanah, G.: Photocatalytic degradation of ciprofloxacin using CuFe2O4@ methyl cellulose based magnetic nanobiocomposite. Methods X 7, 100764 (2020)

    Google Scholar 

  9. Yu, F., Sun, S., Han, S., Zheng, J., Mab, J.: Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem Eng J. 285, 588–595 (2016)

    Article  CAS  Google Scholar 

  10. Taheran, M., Naghdi, M., Brar, S.K., Knystautas, E.J., Verma, M., Surampalli, R.Y.: Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile biochar composite nanofibrous membrane. Sci. Total Environ. 605, 315–321 (2017)

    Article  PubMed  CAS  Google Scholar 

  11. Carrasquillo, A.J., Bruland, G.L., MacKay, A.A., Vasudevan, D.: Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: influence of compound structure. Environ. Sci. Technol. 42, 7634–7642 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Wang, C.J., Li, Z.H., Jiang, W.T.: Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals. Appl. Clay Sci. 53, 723–728 (2011)

    Article  CAS  Google Scholar 

  13. Gu, C., Karthikeyan, K.G.: Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ. Sci. Technol. 39, 9166–9173 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Goyne, K.W., Chorover, J., Kubicki, J.D., Zimmerman, A.R., Brantley, S.L.: Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica. J. Colloid Interface Sci. 283, 160–170 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Rasheed, T., Bilal, M., Hassan, A.A., Nabeel, F., Bharagava, R.N., Ferreira, L.F.R., Iqbal, H.M.: Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents. Environ. Res. 184, 109436 (2020)

    Article  CAS  Google Scholar 

  16. Haldar, D.J., Duarah, P., Purkait, M.K.: MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: a review. Chemosphere 251, 126388 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. Liu, X.Y., Wang, K.X., Chen, J.S.: Template-directed metal oxides for electrochemical energy storage. Energy Storage Mater. 3, 1–17 (2016)

    Article  Google Scholar 

  18. Obermayer, D., Balu, A.M., Romero, A.A., Goessler, W., Luque, R., Kappe, C.O.: Nanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcohol. Green Chem. 15, 1530–1537 (2013)

    Article  CAS  Google Scholar 

  19. Shelke, S.N., Bankar, S.R., Mhaske, G.R., Kadam, S.S., Murade, D.K., Bhorkade, S.B., Rathi, A.K., Bundaleski, N., Teodoro, O.M.N.D., Zboril, R., Varma, R.S., Gawande, M.B.: Iron oxide-supported copper oxide nanoparticles (Nanocat-Fe-CuO): magnetically recyclable catalysts for the synthesis of pyrazole derivatives, 4-methoxyaniline, and ullmann-type condensation reactions. ACS Sustain. Chem. Eng. 2, 1699–1706 (2014)

    Article  CAS  Google Scholar 

  20. Ardakani, M.M., Maleki, M., Khoshroo, A.: High performance electrochemical sensor based on electro deposited iron oxide nanoparticle: catecholamine as analytical probe. J. Iran Chem. Soc. 14, 1659–1664 (2017)

    Article  CAS  Google Scholar 

  21. Wu, J., Wang, J., Li, H., Du, Y., Huang, K., Liu, B.: Designed synthesis of hematite-based nanosorbents for dye removal. J. Mater. Chem. A. 1, 9837–9847 (2013)

    Article  CAS  Google Scholar 

  22. Lee, Y., Gunten, U.V.: Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical). Water Res. 44, 555–566 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Peings, V., Pigot, T., Baylere, P., Sotiropoulos, J.M., Frayret, J.: Removal of pharmaceuticals by a potassium ferrate(vi) material: from practical implementation to reactivity prediction. Environ. Sci. Water Res. Technol. 3, 699–709 (2017)

    Article  CAS  Google Scholar 

  24. Félix, A.M.H., Flores, C.A., Cruz, A.M., Barandiarán, J.M., Guzmán, S.S., Silva, R.C.: Removal of tetracycline pollutants by adsorption and magnetic separation using reduced graphene oxide decorated with α-Fe2O3 nanoparticles. Nanomaterials 9(3), 313 (2019)

    Article  CAS  Google Scholar 

  25. Cao, Z., Liu, X., Xu, J., Zhang, J., Yang, Y., Zhou, J., Xu, X., Lowry, G.V.: Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron. Environ. Sci. Technol. 51, 11269–11277 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. Li, X., Xu, H., Chen, Z.S., Chen, G.: Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 270974, 1–16 (2011)

    Google Scholar 

  27. Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P., Kumar, P.: Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol. 16, 84–108 (2018)

    Article  CAS  Google Scholar 

  28. Mondal, P., Purkait, M.K.: Preparation and characterization of novel green synthesized iron–aluminum nanocomposite and studying its efficiency in fluoride removal. Chemosphere 235, 391–402 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. Ahmmad, B., Leonard, K., Islam, M.S., Kurawaki, J., Muruganandham, M., Ohkubo, T., Kurod, Y.: Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Powder Technol. 24, 160–167 (2013)

    Article  CAS  Google Scholar 

  30. Su, H., Wang, X., Sun, Y., Xu, D., Li, L., Liu, C., Zeng, S., Sun, D.: Enhancing the adsorption capacity of hematite by manganese doping: facile synthesis and its application in the removal of congo red. Bull. Korean Chem. Soc. 38, 1155–1162 (2017)

    Article  CAS  Google Scholar 

  31. Mondal, P., Anweshan, A., Purkait, M.K.: Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review. Chemosphere 259, 127509 (2020)

    Article  CAS  PubMed  Google Scholar 

  32. Liang, X., Zhu, S., Zhong, Y., Zhu, J., Yuan, P., He, H., Zhang, J.: The remarkable effect of vanadium doping on the adsorption and catalytic activity of magnetite in the decolorization of methylene blue. Appl. Catal. B Environ. 97, 151–159 (2010)

    Article  CAS  Google Scholar 

  33. Lemine, O.M., Ghiloufi, I., Bououdina, M., Khezami, L., Mhmed, M.O., Hassan, A.T.: Nanocrystalline Ni doped α-Fe2O3 for adsorption of metals from aqueous solution. J Alloys Compd. 588, 592–595 (2014)

    Article  CAS  Google Scholar 

  34. Kumar, V., Jain, A., Wadhawan, S., Mehta, S.K.: Synthesis of biosurfactant coated magnesium oxide nanoparticles for methylene blue removal and selective Pb2+. Sens. IET Nanobiotechnol. 2(3), 4 (2018)

    Google Scholar 

  35. Vanaja, M., Gnanajobitha, G., Paulkumar, K., Kumar, S.R., Malarkodi, C., Annadurai, G.: Phytosynthesis of silver nanoparticles by Cissusquadrangularis: infuence of physicochemical factors. J. Nanostruct. Chem. 3, 1–8 (2013)

    Article  Google Scholar 

  36. Gopinath, K., Chinnadurai, M., Devi, N.P., Bhakyaraj, K., Kumaraguru, S., Baranisri, T., Sudha, A., Zeeshan, M., Arumugam, A., Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., Benelli, G.: One-pot synthesis of dysprosium oxide nano-sheets: antimicrobial potential and cyotoxicity on A549 lung cancer cells. J. Clust. Sci. 28(1), 621–623 (2016)

    Article  CAS  Google Scholar 

  37. Deneva, I.M.: Infrared spectroscopy investigation of metallic nanoparticles based on copper, cobalt, and nickel synthesized through borohydride reduction method. J. Chem. Technol. Metall. 45(4), 351–3789 (2010)

    Google Scholar 

  38. Balamurugan, M., Saravanan, S., Soga, T.: Synthesis of iron oxide nanoparticles by using Eucalyptus globulus plant extract. J. Surf. Sci. Nanotech. 12, 363–367 (2011)

    Article  CAS  Google Scholar 

  39. Niasari, M.S., Javidi, J.: Synthesis of hollow SiO2 nanoparticles from Dy2O3@SiO2 core-shell nanocomposites via a recyclable sonochemical method. J. Clust. Sci. 23, 1019–1028 (2012)

    Article  CAS  Google Scholar 

  40. Kamali, K.Z., Alagarsamy, P., Huang, N.M., Ong, B.H., Lim, H.N.: Hematite nanoparticles-modified electrode based electrochemical sensing platform for dopamine. Sci. World J. 396135, 1–13 (2014)

    Article  Google Scholar 

  41. Nasrabadi, M.R., Pourmortazavi, S.M., Ganjali, M.R., Faridbod, P.N.F., Karim, M.S.: Preparation of dysprosium carbonate and dysprosium oxide efficient photocatalyst nanoparticles through direct carbonation and precursor thermal decomposition. J. Mater. Sci. Mater. Electron. 28, 3325–3336 (2017)

    Article  CAS  Google Scholar 

  42. Chandrasekhar, M., Nagabhushana, H., Sudheerkumar, K.H., Dhananjaya, N., Sharma, S.C., Kavyashree, D., Shivakumara, C., Nagabhushana, B.M.: Comparison of structural and luminescence properties of Dy2O3 nanopowders synthesized by co-precipitation and green combustion routes. Mater. Res. Bull. 55, 237–245 (2014)

    Article  CAS  Google Scholar 

  43. Ebrahiminezhad, A., Hoseinabadi, Z., Berenjian, A., Ghasemi, Y.: Green synthesis and characterization of zerovalent iron nanoparticles using stinging nettle (Urticadioica) leaf extract. Green Process Synth. 6(5), 1 (2017)

    Google Scholar 

  44. Njagi, E.C., Huang, H., Stafford, L., Genuino, H., Galindo, H.M., Collins, J.B., Hoag, G.E., Suib, S.L.: Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1), 264–271 (2010)

    Article  PubMed  CAS  Google Scholar 

  45. Litter, M.I., Navio, J.A.: Photocatalytic properties of iron-doped titania semiconductors. J. Photochem. Photobiol. A. 98, 171–181 (1996)

    Article  CAS  Google Scholar 

  46. Fetisov, A.V., Kozhina, G.A., Estemirova, SKh., Fetisov, V.B., Gulyaeva, R.I.: XPS study of the chemical stability of DyBa2Cu3O6 superconductor. Phys. C 508, 62–68 (2015)

    Article  CAS  Google Scholar 

  47. Hawn, D.D., DeKoven, B.M.: Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf. Interface Anal. 10, 63–74 (1987)

    Article  CAS  Google Scholar 

  48. Mills, P., Sullivan, J.L.: A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J. Phys. D Appl. Phys. 16, 723–732 (1983)

    Article  CAS  Google Scholar 

  49. Muhler, M., Schlӧgl, R., Ertl, G.: The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. J. Catal. 138, 413–444 (1992)

    Article  CAS  Google Scholar 

  50. Wagner, C.D., Zatko, D.A., Raymond, R.H.: Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal. Chem. 52, 1445–1451 (1980)

    Article  CAS  Google Scholar 

  51. Sarma, D.D., Rao, C.N.R.: XPES studies of oxides of second- and third-row transition metals including rare earths. J. Electron Spectrosc. Relat. Phenom. 20, 25–45 (1980)

    Article  CAS  Google Scholar 

  52. Mansingh, S., Acharya, R., Martha, S., Parida, K.M.: Pyrochlore Ce2Zr2O7 decorated over rGO: a photocatalyst that proves to be efficient towards the reduction of 4-nitrophenol and degradation of ciprofloxacin under visible light. Phys. Chem. Chem. Phys. 20, 9872–9885 (2018)

    Article  CAS  PubMed  Google Scholar 

  53. Shankar, S.S., Ahmad, A., Sastry, M.: Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 19(6), 1627–1631 (2003)

    Article  CAS  PubMed  Google Scholar 

  54. Justus, J.S., Roy, S.D.D., Raj, A.M.E.: Synthesis and characterization of hematite nanopowders. Mater. Res. Express 3, 105037–105046 (2016)

    Article  CAS  Google Scholar 

  55. Karpagavinayagam, P., Vedhi, C.: Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum 160, 286–292 (2019)

    Article  CAS  Google Scholar 

  56. Mansilla, M.V., Zysler, R., Fiorani, D., Suber, L.: Annealing effects on magnetic properties of acicular hematite nanoparticles. Phys. B. 320, 206–209 (2002)

    Article  CAS  Google Scholar 

  57. Purnama, B., Wijayanta, A.T., Suharyana: Effect of calcination temperature on structural and magnetic properties in cobalt ferrite nano particles. King Saud Univ. Sci. 31(4), 956–960 (2019)

    Article  Google Scholar 

  58. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  59. Shimizu, K., Kubo, T., Satsuma, A., Kamachi, T., Yoshizawa, K.: Surface oxygen atom as a cooperative ligand in Pd nanoparticle catalysis for selective hydration of nitriles to amides in water: experimental and theoretical studies. ACS Catal. 2, 2467–2474 (2012)

    Article  CAS  Google Scholar 

  60. Justus, J.S., Roy, S.D.D., Raj, A.M.E.: Synthesis and characterization of hematite nanopowders. Mater. Res. Express. 3, 105037–105046 (2016)

    Article  CAS  Google Scholar 

  61. Meng, A., Xing, J., Li, Z., Lian, Q.: Cr-Doped ZnO nanoparticles synthesis, characterization adsorption property and recyclability. ACS Appl. Mater. Interfaces. 7, 27449–27457 (2015)

    Article  CAS  PubMed  Google Scholar 

  62. Muthukumaran, C., Sivakumar, V.M., Thirumarimurugan, M.: Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J. Taiwan Inst. Chem. E. 63, 354–362 (2016)

    Article  CAS  Google Scholar 

  63. Yavari, S., Mahmodi, N.M., Teymouri, P., Shahmoradi, N., Maleki, A.: Cobalt ferrite nanoparticles: preparation, characterization and anionic dye removal capability. Taiwan Inst. Chem. Eng. 59, 320–329 (2016)

    Article  CAS  Google Scholar 

  64. Kataria, N., Garg, V.K., Jain, M., Kadirvelu, K.: Preparation, characterization and potential use of flower shaped zinc oxide nanoparticles (ZON) for the adsorption of Victoria Blue B dye from aqueous solution. Adv. Powder Technol. 27(4), 1180–1188 (2016)

    Article  CAS  Google Scholar 

  65. Weber, W., Morris, J.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31–60 (1963)

    Article  Google Scholar 

  66. Konicki, W., Sibera, D., Mijowska, E., Bielun, Z.L., Narkiewicz, U.: Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J. Colloid Interface Sci. 398, 152–160 (2013)

    Article  CAS  PubMed  Google Scholar 

  67. Tang, Y., Guo, H., Xiao, L., Yu, S., Gao, N., Wang, Y.: Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf. A Physicochem. Eng. Aspects. 424, 74–80 (2013)

    Article  CAS  Google Scholar 

  68. Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M., Su, X.: Adsorption and removal of tetracycline antibiotics form aqueous solution by graphene oxide. J. Colloid Interface Sci. 368, 540–546 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. Fan, H., Ma, X., Zhou, S., Huang, J., Liu, Y., Liu, Y.: Highly efficient removal of heavy metal ions by carboxymethyl cellulose immobilized Fe3O4 nanoparticles prepared via high-gravity technology. Carbohyd. Polym. 213, 39–49 (2019)

    Article  CAS  Google Scholar 

  70. Zafar, M.N., Dar, Q., Nawaz, F., Zafar, M., Iqbal, M., Nazar, M.F.: Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J. Mater. Res. Technol. 8(1), 713–725 (2019)

    Article  CAS  Google Scholar 

  71. Zhang, L., Song, X., Liu, X., Yang, L., Pan, F., Lv, J.: Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem. Eng. J. 178, 26–33 (2011)

    Article  CAS  Google Scholar 

  72. Anirudhan, T.S., Deep, J.R., Nair, A.S.: Fabrication of chemically modified graphene oxide/nano hydroxyapatite composite for adsorption and subsequent photocatalytic degradation of aureomycine hydrochloride. J. Ind. Eng. Chem. 47, 415–430 (2017)

    Article  CAS  Google Scholar 

  73. Tabrizian, P., Ma, W., Bakr, A., Rahaman, M.S.: pH-sensitive and magnetically separable Fe/Cu bimetallic nanoparticles supported by graphene oxide (GO) for high-efficiency removal of tetracyclines. J. Colloid Interface Sci. 534, 549–562 (2019)

    Article  CAS  PubMed  Google Scholar 

  74. Glu, S.T.D., Bayazit, S.S., Kerkez, O., Alhogbid, B.G., Salam, M.A.: Removal of ciprofloxacin from aqueous solution using humic acid and levulinic acid coated Fe3O4 nanoparticles. Chem. Eng. Res. Des. 123, 259–267 (2017)

    Article  CAS  Google Scholar 

  75. Yu, F., Sun, S., Han, S., Zheng, J., Ma, J.: Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem. Eng. J. 285, 588–595 (2016)

    Article  CAS  Google Scholar 

  76. Arakha, M., Pal, S., Samantarrai, D.: Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5, 14813 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder Kumar Mehta.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1338 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Aashima Sharma, Kapur, A. et al. Hematite dysprosium oxide nanocomposites biosynthesized via greener route for ciprofloxacin removal and antimicrobial activity. J Nanostruct Chem 11, 437–453 (2021). https://doi.org/10.1007/s40097-020-00379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00379-1

Keywords

Navigation