Skip to main content

Advertisement

Log in

Mechanism and optimization of activating fluxes for process stability and weldability of hybrid laser-arc welded HSLA steel

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The effects of activating fluxes on weld bead morphology, arc behavior, electrical signals, and temperature field were investigated. Real-time weld pool dynamics, electrical signal waveforms, and temperature contours were obtained by high speed camera, real-time electric signal acquisition card, and infrared thermal camera. The additions of SiO2, TiO2, ZnO, and Fe2O3 not only improved the weld formation and penetration depth but also reduced the welding voltage and increased welding current. Decomposition and evaporation of activating fluxes produced oxygen caused arc constriction and increased the laser efficiency. The effect of MnO2 was little. CaO and B2O3 dramatically deteriorated process stability since CaO and B2O3 gave rise to droplet transfer mode changing from spray transfer to short-circuit/ large globular repelled transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Steen WM (1979) Arc augmented laser welding. Metals Constr 21:332–333 335

    Google Scholar 

  2. Eboo GM (1979) Arc augmented laser welding

  3. Zhan X, Li Y, Ou W, Yu F, Chen J, Wei Y (2016) Comparison between hybrid laser-MIG welding and MIG welding for the invar36 alloy. Opt Laser Technol 85:75–84

    Article  CAS  Google Scholar 

  4. Norman PM, Karlsson J, Kaplan AF (2011) Mechanisms forming undercuts during laser hybrid arc welding. Phys Procedia 12:201–207

    Article  Google Scholar 

  5. Karlsson J, Norman P, Kaplan AF, Rubin P, Lamas J, Yañez A (2011) Observation of the mechanisms causing two kinds of undercut during laser hybrid arc welding. Appl Surf Sci 257(17):7501–7506

    Article  CAS  Google Scholar 

  6. Gao X, Wang Y, Chen Z, Ma B, Zhang Y (2018) Analysis of welding process stability and weld quality by droplet transfer and explosion in MAG-laser hybrid welding process. J Manuf Process 32:522–529

    Article  Google Scholar 

  7. Liu S, Liu F, Xu C, Zhang H (2013) Experimental investigation on arc characteristic and droplet transfer in CO2 laser–metal arc gas (MAG) hybrid welding. Int J Heat Mass Transf 62:604–611

    Article  CAS  Google Scholar 

  8. Jayakrishnan S, Chakravarthy P (2017) Flux bounded tungsten inert gas welding for enhanced weld performance—a review. J Manuf Process 28:116–130

    Article  Google Scholar 

  9. Paskell T, Lundin C, Castner H (1997) GTAW flux increases weld joint penetration. Weld J (USA) 76(4):57–62

    CAS  Google Scholar 

  10. Parshin SG, Parshin SS, Buerkner G (2012) The effect of ultrafine particles of activating fluxes on the laser welding process. Weld Int 26(12):980–983

    Article  Google Scholar 

  11. Huang H, Shyu S, Tseng K, Chou C (2005) Evaluation of TIG flux welding on the characteristics of stainless steel. Sci Technol Weld Join 10(5):566–573

    Article  CAS  Google Scholar 

  12. Kuo CH, Tseng KH, Chou CP (2011) Effect of activated TIG flux on performance of dissimilar welds between mild steel and stainless steel. In: Key Engineering Materials, Trans Tech Publ, pp 74–80

  13. Huang H-Y (2010) Effects of activating flux on the welded joint characteristics in gas metal arc welding. Mater Des (1980-2015) 31(5):2488–2495

    Article  CAS  Google Scholar 

  14. Heiple C, Roper J, Stagner R, Aden R (1983) Surface active element effects on the shape of GTA, laser and electron beam welds. Weld J 62(3):72

    Google Scholar 

  15. Wang LL, Lu FG, Wang HP, Murphy AB, Tang XH (2014) Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels. J Phys D Appl Phys 47(46):465202

    Article  CAS  Google Scholar 

  16. Zhang Z, Fan F, Liu L (2013) Oxide contributions on arc plasma in tungsten inert gas welding of magnesium alloy. Sci Technol Weld Join 18(5):434–440

    Article  CAS  Google Scholar 

  17. Zhao Y, Yang G, Yan K, Liu W (2011) Effect on formation of 5083 aluminum alloy of activating flux in FBTIG welding. In: Advanced Materials Research. Trans Tech Publ, pp 2385–2388

  18. Shen J, Wang L, Zhao M, Wang D, Xu N (2012) Effects of activating fluxes on pulsed laser beam welded AZ31 magnesium alloy. Sci Technol Weld Join 17(8):665–671

    Article  CAS  Google Scholar 

  19. Dai H, Peng J (2016) Effects of active flux on plasma behavior and weld shape in laser welding of X5CrNi189 stainless steel. Mod Phys Lett B 30(31):1650375

    Article  CAS  Google Scholar 

  20. Wanqiang L, Yanqing L, Fengde L, Hong Z, Shuangyu L (2016) Influence of surfactant on arc and formation of weld on laser-arc hybrid welding. Appl Laser 2:8

    Google Scholar 

  21. Wanqiang L, Yanqing L, Fengde L, Hong Z, Shuangyu L (2016) Influence of surfactant on weld defects on laser-arc hybrid welding. Appl Laser 3:13

    Google Scholar 

  22. Greenwood NN, Earnshaw A (2012) Chemistry of the Elements. Elsevier

  23. Costello FA, Manniso JL, Dipinto AJ, Smith GW (1977) Solar heating system. US

  24. Tseng K-H, Hsu C-Y (2011) Performance of activated TIG process in austenitic stainless steel welds. J Mater Process Technol 211(3):503–512. https://doi.org/10.1016/j.jmatprotec.2010.11.003

    Article  CAS  Google Scholar 

  25. Shyu SW, Huang HY, Tseng KH, Chou CP (2008) Study of the Performance of stainless steel A-TIG welds. J Mater Eng Perform 17(2):193–201. https://doi.org/10.1007/s11665-007-9139-7

    Article  CAS  Google Scholar 

  26. Lu S, Fujii H, Nogi K (2004) Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2–Ar shielded GTA welding. Scr Mater 51(3):271–277. https://doi.org/10.1016/j.scriptamat.2004.03.004

    Article  CAS  Google Scholar 

  27. Kulkarni A, Dwivedi DK, Vasudevan M (2018) Study of mechanism, microstructure and mechanical properties of activated flux TIG welded P91 Steel-P22 steel dissimilar metal joint. Mater Sci Eng A 731:309–323

    Article  CAS  Google Scholar 

  28. Tseng KH (2013) Development and application of oxide-based flux powder for tungsten inert gas welding of austenitic stainless steels. Powder Technol 233(2):72–79

    Article  CAS  Google Scholar 

  29. Lu S, Fujii H, Sugiyama H, Tanaka M, Nogi K (2002) Weld penetration and Marangoni convection with oxide fluxes in GTA welding. Mater Trans 43(11):2926–2931

    Article  CAS  Google Scholar 

  30. Lowke J, Tanaka M, Ushio M (2005) Mechanisms giving increased weld depth due to a flux. J Phys D Appl Phys 38(18):3438

    Article  CAS  Google Scholar 

  31. Zhao C, Kwakernaak C, Pan Y, Richardson I, Saldi Z, Kenjeres S, Kleijn C (2010) The effect of oxygen on transitional Marangoni flow in laser spot welding. Acta Mater 58(19):6345–6357

    Article  CAS  Google Scholar 

  32. Huang H-Y (2010) Argon-hydrogen shielding gas mixtures for activating flux-assisted gas tungsten arc welding. Metall Mater Trans A 41(11):2829–2835

    Article  CAS  Google Scholar 

  33. Wang J, Sun Q, Zhang S, Wang C, Wu L, Feng J (2018) Characterization of the underwater welding arc bubble through a visual sensing method. J Mater Process Technol 251:95–108

    Article  Google Scholar 

  34. Xu G, Wang J, Li P, Zhu J, Cao Q (2018) Numerical analysis of heat transfer and fluid flow in swing arc narrow gap GMA welding. J Mater Process Technol 252:260–269

    Article  Google Scholar 

  35. Yang M, Zheng H, Qi B, Yang Z (2017) Effect of arc behavior on Ti-6Al-4V welds during high frequency pulsed arc welding. J Mater Process Technol 243:9–15

    Article  CAS  Google Scholar 

  36. Dhandha KH, Badheka VJ (2015) Effect of activating fluxes on weld bead morphology of P91 steel bead-on-plate welds by flux assisted tungsten inert gas welding process. J Manuf Process 17:48–57

    Article  Google Scholar 

  37. Weman K (2011) Welding processes handbook. Elsevier

  38. Jeffus L (2011) Welding: principles and applications. Nelson Education

  39. Jia L, Shichun J, Yan S, Cong N, Genzhe H (2015) Effects of zinc on the laser welding of an aluminum alloy and galvanized steel. J Mater Process Technol 224:49–59

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (No. 51775338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuguo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Study Group 212 - The Physics of Welding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, Y., Xiong, Z. et al. Mechanism and optimization of activating fluxes for process stability and weldability of hybrid laser-arc welded HSLA steel. Weld World 65, 753–766 (2021). https://doi.org/10.1007/s40194-020-01038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-020-01038-3

Keywords

Navigation