Skip to main content
Log in

Research Progress on the Water Stability of a Metal-Organic Framework in Advanced Oxidation Processes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) are a new class of organic-inorganic hybrid materials that are self-assembled metal clusters and organic ligands. Because MOFs have an ultrahigh surface area, a controllable size, and adjustable chemical properties, which are not available in other porous materials, it has broad application potential in chemical sensing, gas storage, and catalysis. However, the stability of MOFs in water is poor. The presence of water molecules changes the structures and properties of MOFs, which limits their industrial application in advanced oxidation process. In this paper, the definition of water stability is introduced in detail, and the damage mechanism of water molecules on MOFs is analyzed from the perspective of thermodynamic stability and kinetic stability. According to varying factors that affect MOFs’ water stability, corresponding methods to improve MOFs water stability are proposed, and research trends on the stability of MOFs in water are speculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

aIM:

2-carbaldehyde imidazolate

Al-MIL-101:

Cr3F(H2O)2O(BDC)3

BDC:

1,4-benzenedicarboxylate

BET:

Brunauer-Emmett-Teller

BOD5 :

biochemical oxygen demand

BPTC:

biphenyl-3,3′,5,5′-tetracarboxylate

BTB:

4,4′,4′′-benzene-1,3,5-triyltribenzoate

BTC:

1,3,5-benzenetricarboxylate

BTDD:

(bis(1H-1,2,3-triazolo[4,5-b],[4′,5′-i])dibenzo[1,4] dioxin)

COD:

chemical oxygen demand

DABCO:

4-diazabicyclo[2.2.2]-octane

DMF:

2,5-dimercapto-1,4-benzenedicarboxylate

DMOF:

Zn(BDC)(DABCO)0.5

DOBDC:

2,5-dihydroxyterephthalate

DOT:

2,5-dihydroxyterephthalic

DTTDC:

dithieno[3,2-b:2′,3′-d]thiophene-2,6-dicarboxylic

DUT-67:

Zr6O6(OH)2(TDC)4(CH3COO)2

eIM:

2-ethyleimidazolate

MIL:

Materials Institute Lavoisier

MIL-53:

M(OH)(BDC)

MIL-47-V:

V(O)(BDC)

MIL-140:

ZrO(BDC)

MIL-88:

Fe3O(OH)(H2O)2(BDC)3

MIL-100(Fe):

[Fe3O(H2O)2(L)](BTC)2

MIL-101:

[M3OL3](BDC)3

IR:

infrared absorption spectrum

IRMOF-1:

M4O(BDC)3

IRMOF-3:

Zn4O(NH2-BDC)3

MAF-6:

RHO-Zn(eIM)2

mIM:

2-methyl-1H-imidazole

MOF-5:

Zn4O(BDC)3

MOF-2:

Zn2(BDC)2(H2O)2

MOF-69C:

Zn3(OH)2(BDC)2

MOF-74:

M2(DOT)

MOF-177:

Zn4O(BTB)2

MOF-505:

[Cu2(bptc)(H2O)2(dmf)3(H2O)]

MOF-508b:

Zn(BDC)(bipy)0.5

PCN-61:

Cu3(H2O)3(BTEI)

PCN-134:

Zr6O4(OH)4(TCPP-H2)3

PCN-225:

Zr6O4(OH)4(TCPP-H2)2(H2O)4(OH)4

PCN-601:

Ni8(OH)4(H2O)2TPP12

PXRD:

powder X-ray diffraction

TDC:

thiophene-2,5-dicarboxylic

TPTC:

terphenyl-3,3′,5,5′-tetracarboxylaic

ZIF-7:

Zn(BIM)2

ZIF-8:

Zn(mIM)2

ZIF-90:

Zn(aIM)2

ZIF-67:

Co(Hmim)2

Zn-MOF-74:

Zn2(DOBDC)

References

  • Abrahams, B. F., Hoskins, B. F., Michail, D. M., & Robson, R. (1994). Assembly of porphyrin building blocks into network structures with large channels. Nature, 369(6483), 727–729.

    CAS  Google Scholar 

  • Akiyama, G., Matsuda, R., Sato, H., Hori, A., Takata, M., & Kitagawa, S. (2012). Effect of functional groups in MIL-101 on water sorption behavior. Microporous and Mesoporous Materials, 157, 89–93.

    CAS  Google Scholar 

  • Asadi, F., Azizi, S. N., & Ghasemi, S. (2019). A novel non-precious catalyst containing transition metal in nanoporous cobalt based metal-organic framework (ZIF-67) for electrooxidation of methanol. Journal of Electroanalytical Chemistry, 847, 113181.

    Google Scholar 

  • Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., Keeffe, M., et al. (2008). High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 319(5865), 939.

    CAS  Google Scholar 

  • Bellarosa, L., Calero, S., & López, N. (2012). Early stages in the degradation of metal–organic frameworks in liquid water from first-principles molecular dynamics. Physical Chemistry Chemical Physics, 14(20), 7240–7245.

    CAS  Google Scholar 

  • Bellarosa, L., Gutiérrez-Sevillano, J. J., Calero, S., & López, N. (2013). How ligands improve the hydrothermal stability and affect the adsorption in the IRMOF family. Physical Chemistry Chemical Physics, 15(40), 17696–17704.

    CAS  Google Scholar 

  • Beltrán, F. J., Rivas, J., Álvarez, P., & Montero-de-Espinosa, R. (2002). Kinetics of heterogeneous catalytic ozone decomposition in water on an activated carbon. Ozone: Science & Engineering, 24(4), 227–237.

    Google Scholar 

  • Biswas, S., Zhang, J., Li, Z., Liu, Y.-Y., Grzywa, M., Sun, L., et al. (2013). Enhanced selectivity of CO2 over CH4 in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks. Dalton Transactions, 42(13), 4730–4737.

    CAS  Google Scholar 

  • Bon, V., Senkovskyy, V., Senkovska, I., & Kaskel, S. (2012). Zr(iv) and Hf(iv) based metal–organic frameworks with reo-topology. Chemical Communications, 48(67), 8407–8409.

    CAS  Google Scholar 

  • Burtch, N. C., Jasuja, H., & Walton, K. S. (2014). Water stability and adsorption in metal–organic frameworks. Chemical Reviews, 114(20), 10575–10612.

    CAS  Google Scholar 

  • Cai, Y., Zhang, Y., Huang, Y., Marder, S. R., & Walton, K. S. (2012). Impact of alkyl-functionalized BTC on properties of copper-based metal–organic frameworks. Crystal Growth & Design, 12(7), 3709–3713.

    CAS  Google Scholar 

  • Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., et al. (2008). A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 130(42), 13850–13851.

    Google Scholar 

  • Chen, B., Yang, Y., Zapata, F., Lin, G., Qian, G., & Lobkovsky, E. B. (2007). Luminescent open metal sites within a metal–organic framework for sensing small molecules. Advanced Materials, 19(13), 1693–1696.

    CAS  Google Scholar 

  • Chen, T.-H., Popov, I., Zenasni, O., Daugulis, O., & Miljanić, O. Š. (2013). Superhydrophobic perfluorinated metal–organic frameworks. Chemical Communications, 49(61), 6846–6848.

    CAS  Google Scholar 

  • Chen, Y., Li, P., Modica, J. A., Drout, R. J., & Farha, O. K. (2018). Acid-resistant mesoporous metal–organic framework toward oral insulin delivery: protein encapsulation, protection, and release. Journal of the American Chemical Society, 140(17), 5678–5681.

    CAS  Google Scholar 

  • Chi, L., Xu, Q., Liang, X., Wang, J., & Su, X. (2016). Iron-based metal–organic frameworks as catalysts for visible light-driven water oxidation. Small, 12(10), 1351–1358.

    CAS  Google Scholar 

  • Choi, H. J., Dincă, M., Dailly, A., & Long, J. R. (2010). Hydrogen storage in water-stable metal–organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate. Energy & Environmental Science, 3(1), 117–123.

    CAS  Google Scholar 

  • Collins, D. J., & Zhou, H.-C. (2007). Hydrogen storage in metal–organic frameworks. Journal of Materials Chemistry, 17(30), 3154–3160.

    CAS  Google Scholar 

  • Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., et al. (2011). High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2(7), 1311–1319.

    CAS  Google Scholar 

  • Corma, A., & García, H. (2003). Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chemical Reviews, 103(11), 4307–4366.

    CAS  Google Scholar 

  • Cunha, D., Ben Yahia, M., Hall, S., Miller, S. R., Chevreau, H., Elkaïm, E., et al. (2013). Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks. Chemistry of Materials, 25(14), 2767–2776.

    CAS  Google Scholar 

  • Cychosz, K. A., & Matzger, A. J. (2010). Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water. Langmuir, 26(22), 17198–17202.

    CAS  Google Scholar 

  • Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284–1293.

    CAS  Google Scholar 

  • De Toni, M., Jonchiere, R., Pullumbi, P., Coudert, F.-X., & Fuchs, A. H. (2012). How can a hydrophobic MOF be water-unstable? Insight into the hydration mechanism of IRMOFs. ChemPhysChem, 13(15), 3497–3503.

    Google Scholar 

  • DeCoste, J. B., Peterson, G. W., Jasuja, H., Glover, T. G., & Huang, Y.-g., & Walton, K. S. (2013a). Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. Journal of Materials Chemistry A, 1(18), 5642–5650.

    CAS  Google Scholar 

  • DeCoste, J. B., Peterson, G. W., Schindler, B. J., Killops, K. L., Browe, M. A., & Mahle, J. J. (2013b). The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. Journal of Materials Chemistry A, 1(38), 11922–11932.

    CAS  Google Scholar 

  • Decoste, J. B., Peterson, G. W., Smith, M. W., Stone, C. A., & Willis, C. R. (2012). Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition. Journal of the American Chemical Society, 134(3), 1486–1489.

    CAS  Google Scholar 

  • Demessence, A., D’Alessandro, D. M., Foo, M. L., & Long, J. R. (2009). Strong CO2 binding in a water-stable, triazolate-bridged metal−organic framework functionalized with ethylenediamine. Journal of the American Chemical Society, 131(25), 8784–8786.

    CAS  Google Scholar 

  • Deng, Y., & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1(3), 167–176.

    CAS  Google Scholar 

  • Dhaka, S., Kumar, R., Deep, A., Kurade, M. B., Ji, S.-W., & Jeon, B.-H. (2019). Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordination Chemistry Reviews, 380, 330–352.

    CAS  Google Scholar 

  • Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856–867.

    CAS  Google Scholar 

  • Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262–5284.

    CAS  Google Scholar 

  • Dhakshinamoorthy, A., & Garcia, H. (2014a). Cascade reactions catalyzed by metal organic frameworks. ChemSusChem, 7(9), 2392–2410.

    CAS  Google Scholar 

  • Dhakshinamoorthy, A., & Garcia, H. (2014b). Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chemical Society Reviews, 43(16), 5750–5765.

    CAS  Google Scholar 

  • Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., Keeffe, M., et al. (2002). Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 295(5554), 469.

    CAS  Google Scholar 

  • Eubank, J. F., Wheatley, P. S., Lebars, G., McKinlay, A. C., Leclerc, H., Horcajada, P., et al. (2014). Porous, rigid metal(III)-carboxylate metal-organic frameworks for the delivery of nitric oxide. APL Materials, 2(12), 124112.

    Google Scholar 

  • Eyring, H. (1935). The activated complex in chemical reactions. The Journal of Chemical Physics, 3(2), 107–115.

    CAS  Google Scholar 

  • Farha, O. K., Spokoyny, A. M., Mulfort, K. L., Hawthorne, M. F., Mirkin, C. A., & Hupp, J. T. (2007). Synthesis and hydrogen sorption properties of carborane based metal−organic framework materials. Journal of the American Chemical Society, 129(42), 12680–12681.

    CAS  Google Scholar 

  • Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal–organic frameworks: opportunities for catalysis. Angewandte Chemie International Edition, 48(41), 7502–7513.

    CAS  Google Scholar 

  • Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., et al. (2005). A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 309(5743), 2040.

    Google Scholar 

  • Furukawa, H., Gándara, F., Zhang, Y.-B., Jiang, J., Queen, W. L., Hudson, M. R., et al. (2014). Water adsorption in porous metal–organic frameworks and related materials. Journal of the American Chemical Society, 136(11), 4369–4381.

    CAS  Google Scholar 

  • Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., et al. (2010). Ultrahigh porosity in metal-organic frameworks. Science, 329(5990), 424.

    CAS  Google Scholar 

  • Gągol, M., Przyjazny, A., & Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation – a review. Chemical Engineering Journal, 338, 599–627.

    Google Scholar 

  • Gao, C., Chen, S., Quan, X., Yu, H., & Zhang, Y. (2017). Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants. Journal of Catalysis, 356, 125–132.

    CAS  Google Scholar 

  • Gao, Y., Xia, J., Liu, D., Kang, R., Yu, G., & Deng, S. (2019). Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light. Chemical Engineering Journal, 378, 122118.

    CAS  Google Scholar 

  • García-García, P., Müller, M., & Corma, A. (2014). MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 5(8), 2979–3007.

    Google Scholar 

  • Gelfand, B. S., Lin, J.-B., & Shimizu, G. K. H. (2015). Design of a humidity-stable metal–organic framework using a phosphonate monoester ligand. Inorganic Chemistry, 54(4), 1185–1187.

    CAS  Google Scholar 

  • Greathouse, J. A., & Allendorf, M. D. (2006). The interaction of water with MOF-5 simulated by molecular dynamics. Journal of the American Chemical Society, 128(33), 10678–10679.

    CAS  Google Scholar 

  • Han, F., Kambala, V. S. R., Srinivasan, M., Rajarathnam, D., & Naidu, R. (2009). Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Applied Catalysis A: General, 359(1), 25–40.

    CAS  Google Scholar 

  • Han, S., Huang, Y., Watanabe, T., Dai, Y., Walton, K. S., Nair, S., et al. (2012). High-throughput screening of metal–organic frameworks for CO2 separation. ACS Combinatorial Science, 14(4), 263–267.

    CAS  Google Scholar 

  • Hausdorf, S., Wagler, J., Moβig, R., & Mertens, F. O. R. L. (2008). Proton and water activity-controlled structure formation in zinc carboxylate-based metal organic frameworks. The Journal of Physical Chemistry A, 112(33), 7567–7576.

    CAS  Google Scholar 

  • He, C.-T., Jiang, L., Ye, Z.-M., Krishna, R., Zhong, Z.-S., Liao, P.-Q., et al. (2015). Exceptional hydrophobicity of a large-pore metal–organic zeolite. Journal of the American Chemical Society, 137(22), 7217–7223.

    CAS  Google Scholar 

  • Huang, L., Wang, H., Chen, J., Wang, Z., Sun, J., Zhao, D., et al. (2003). Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous and Mesoporous Materials, 58(2), 105–114.

    CAS  Google Scholar 

  • Huang, X.-C., Lin, Y.-Y., Zhang, J.-P., & Chen, X.-M. (2006). Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 45(10), 1557–1559.

    CAS  Google Scholar 

  • Ike, I. A., Linden, K. G., Orbell, J. D., & Duke, M. (2018). Critical review of the science and sustainability of persulphate advanced oxidation processes. Chemical Engineering Journal, 338, 651–669.

    CAS  Google Scholar 

  • Iremonger, S. S., Liang, J., Vaidhyanathan, R., Martens, I., Shimizu, G. K. H., Daff, T. D., et al. (2011). Phosphonate monoesters as carboxylate-like linkers for metal organic frameworks. Journal of the American Chemical Society, 133(50), 20048–20051.

    CAS  Google Scholar 

  • Jeremias, F., Lozan, V., Henninger, S. K., & Janiak, C. (2013). Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. Dalton Transactions, 42(45), 15967–15973.

    CAS  Google Scholar 

  • Ji, P., Manna, K., Lin, Z., Feng, X., Urban, A., Song, Y., et al. (2017). Single-site cobalt catalysts at new Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 metal–organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. Journal of the American Chemical Society, 139(20), 7004–7011.

    CAS  Google Scholar 

  • Jiang, H.-L., Feng, D., Liu, T.-F., Li, J.-R., & Zhou, H.-C. (2012). Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal–organic frameworks. Journal of the American Chemical Society, 134(36), 14690–14693.

    CAS  Google Scholar 

  • Jiang, H.-L., Feng, D., Wang, K., Gu, Z.-Y., Wei, Z., Chen, Y.-P., et al. (2013). An exceptionally stable, porphyrinic Zr metal–organic framework exhibiting pH-dependent fluorescence. Journal of the American Chemical Society, 135(37), 13934–13938.

    CAS  Google Scholar 

  • Low, J. J., Benin, A. I., Jakubczak, P., Abrahamian, J. F., Faheem, S. A., & Willis, R. R. (2009). Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. Journal of the American Chemical Society, 131, 15834–15842.

    CAS  Google Scholar 

  • Kalmutzki, M. J., Hanikel, N., & Yaghi, O. M. (2018). Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Science Advances, 4(10), eaat9180.

    CAS  Google Scholar 

  • Kang, I. J., Khan, N. A., Haque, E., & Jhung, S. H. (2011). Chemical and thermal stability of Isotypic metal–organic frameworks: effect of metal ions. Chemistry – A European Journal, 17(23), 6437–6442.

    CAS  Google Scholar 

  • Karagiaridi, O., Bury, W., Sarjeant, A. A., Stern, C. L., Farha, O. K., & Hupp, J. T. (2012). Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange. Chemical Science, 3(11), 3256–3260.

    CAS  Google Scholar 

  • Karra, J. R., Grabicka, B. E., Huang, Y.-G., & Walton, K. S. (2013). Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal–organic framework (MOF-14). Journal of Colloid and Interface Science, 392, 331–336.

    CAS  Google Scholar 

  • Karthikeyan, S., Titus, A., Gnanamani, A., Mandal, A. B., & Sekaran, G. (2011). Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination, 281, 438–445.

    CAS  Google Scholar 

  • Kaye, S. S., Dailly, A., Yaghi, O. M., & Long, J. R. (2007). Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). Journal of the American Chemical Society, 129(46), 14176–14177.

    CAS  Google Scholar 

  • Ke, D., Feng, J.-F., Wu, D., Hou, J.-B., Zhang, X.-Q., Li, B.-J., et al. (2019). Facile stabilization of a cyclodextrin metal–organic framework under humid environment via hydrogen sulfide treatment. RSC Advances, 9(32), 18271–18276.

    CAS  Google Scholar 

  • Kennedy, R. D., Krungleviciute, V., Clingerman, D. J., Mondloch, J. E., Peng, Y., Wilmer, C. E., et al. (2013). Carborane-based metal–organic framework with high methane and hydrogen storage capacities. Chemistry of Materials, 25(17), 3539–3543.

    CAS  Google Scholar 

  • Khutia, A., Rammelberg, H. U., Schmidt, T., Henninger, S., & Janiak, C. (2013). Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application. Chemistry of Materials, 25(5), 790–798.

    CAS  Google Scholar 

  • Kizzie, A. C., Wong-Foy, A. G., & Matzger, A. J. (2011). Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir, 27(10), 6368–6373.

    CAS  Google Scholar 

  • Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2012). Metal–organic framework materials as chemical sensors. Chemical Reviews, 112(2), 1105–1125.

    CAS  Google Scholar 

  • Kurfiřtová, L., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., & Čejka, J. (2012). High activity of iron containing metal–organic-framework in acylation of p-xylene with benzoyl chloride. Catalysis Today, 179(1), 85–90.

    Google Scholar 

  • Küsgens, P., Rose, M., Senkovska, I., Fröde, H., Henschel, A., Siegle, S., et al. (2009). Characterization of metal-organic frameworks by water adsorption. Microporous and Mesoporous Materials, 120(3), 325–330.

    Google Scholar 

  • Lai, Q., Zheng, L., Liang, Y., He, J., Zhao, J., & Chen, J. (2017). Metal–organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catalysis, 7(3), 1655–1663.

    CAS  Google Scholar 

  • Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450–1459.

    CAS  Google Scholar 

  • Li, H., Eddaoudi, M., Groy, T. L., & Yaghi, O. M. (1998). Establishing microporosity in open metal−organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). Journal of the American Chemical Society, 120(33), 8571–8572.

    CAS  Google Scholar 

  • Li, H., Lv, N., Li, X., Liu, B., Feng, J., Ren, X., et al. (2017). Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale, 9(22), 7454–7463.

    CAS  Google Scholar 

  • Li, H., Shi, W., Zhao, K., Li, H., Bing, Y., & Cheng, P. (2012). Enhanced hydrostability in Ni-doped MOF-5. Inorganic Chemistry, 51(17), 9200–9207.

    CAS  Google Scholar 

  • Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477–1504.

    CAS  Google Scholar 

  • Li, T., Chen, D.-L., Sullivan, J. E., Kozlowski, M. T., Johnson, J. K., & Rosi, N. L. (2013). Systematic modulation and enhancement of CO2 : N2 selectivity and water stability in an isoreticular series of bio-MOF-11 analogues. Chemical Science, 4(4), 1746–1755.

    CAS  Google Scholar 

  • Li, Y., & Yang, R. T. (2007). Gas adsorption and storage in metal−organic framework MOF-177. Langmuir, 23(26), 12937–12944.

    CAS  Google Scholar 

  • Liang, Z., Marshall, M., & Chaffee, A. L. (2010). CO2 adsorption, selectivity and water tolerance of pillared-layer metal organic frameworks. Microporous and Mesoporous Materials, 132(3), 305–310.

    CAS  Google Scholar 

  • Lin, Y., Kong, C., Zhang, Q., & Chen, L. (2017). Metal-organic frameworks for carbon dioxide capture and methane storage. Advanced Energy Materials, 7(4), 1601296.

    Google Scholar 

  • Liu, D., Wu, H., Wang, S., Xie, Z., Li, J., & Lin, W. (2012). A high connectivity metal–organic framework with exceptional hydrogen and methane uptake capacities. Chemical Science, 3(10), 3032–3037.

    CAS  Google Scholar 

  • Liu, J., Benin, A. I., Furtado, A. M. B., Jakubczak, P., Willis, R. R., & LeVan, M. D. (2011). Stability effects on CO2 adsorption for the DOBDC series of metal–organic frameworks. Langmuir, 27(18), 11451–11456.

    CAS  Google Scholar 

  • Llabrés, I., Xamena, F. X., Casanova, O., Galiasso Tailleur, R., Garcia, H., & Corma, A. (2008). Metal organic frameworks (MOFs) as catalysts: a combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 255(2), 220–227.

    Google Scholar 

  • Lu, Y., & Yan, B. (2014). A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium(iii) complexes. Chemical Communications, 50(87), 13323–13326.

    CAS  Google Scholar 

  • Lv, X.-L., Wang, K., Wang, B., Su, J., Zou, X., Xie, Y., et al. (2017). A base-resistant metalloporphyrin metal–organic framework for C–H bond halogenation. Journal of the American Chemical Society, 139(1), 211–217.

    CAS  Google Scholar 

  • Ma, D., Li, Y., & Li, Z. (2011). Tuning the moisture stability of metal–organic frameworks by incorporating hydrophobic functional groups at different positions of ligands. Chemical Communications, 47(26), 7377–7379.

    CAS  Google Scholar 

  • Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), 990–1003.

    CAS  Google Scholar 

  • Makal, T. A., Wang, X., & Zhou, H.-C. (2013). Tuning the moisture and thermal stability of metal–organic frameworks through incorporation of pendant hydrophobic groups. Crystal Growth & Design, 13(11), 4760–4768.

    CAS  Google Scholar 

  • Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 35(12), 1324–1340.

    Google Scholar 

  • Nguyen, J. G., & Cohen, S. M. (2010). Moisture-resistant and superhydrophobic metal−organic frameworks obtained via postsynthetic modification. Journal of the American Chemical Society, 132(13), 4560–4561.

    CAS  Google Scholar 

  • Nguyen, V. H., Bach, L. G., Bui, Q. T. P., Nguyen, T. D., Vo, D.-V. N., Vu, H. T., et al. (2018). Composite photocatalysts containing MIL-53(Fe) as a heterogeneous photo-Fenton catalyst for the decolorization of rhodamine B under visible light irradiation. Journal of Environmental Chemical Engineering, 6(6), 7434–7441.

    CAS  Google Scholar 

  • Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., et al. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186.

    CAS  Google Scholar 

  • Pearson, R. G. (1968). Hard and soft acids and bases, HSAB, part 1: fundamental principles. Journal of Chemical Education, 45(9), 581.

    CAS  Google Scholar 

  • Qasem, N. A. A., Ben-Mansour, R., & Habib, M. A. (2018). An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Applied Energy, 210, 317–326.

    CAS  Google Scholar 

  • Qu, C., Jiao, Y., Zhao, B., Chen, D., Zou, R., Walton, K. S., et al. (2016). Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy, 26, 66–73.

    CAS  Google Scholar 

  • Ranocchiari, M., & Bokhoven, J. A. v. (2011). Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 13(14), 6388–6396.

    CAS  Google Scholar 

  • Reimer, N., Bueken, B., Leubner, S., Seidler, C., Wark, M., De Vos, D., et al. (2015). Three series of Sulfo-functionalized mixed-linker CAU-10 analogues: sorption properties, proton conductivity, and catalytic activity. Chemistry – A European Journal, 21(35), 12517–12524.

    CAS  Google Scholar 

  • Rieth, A. J., Yang, S., Wang, E. N., & Dincă, M. (2017). Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit. ACS Central Science, 3(6), 668–672.

    CAS  Google Scholar 

  • Sahar, S., Zeb, A., Liu, Y., Ullah, N., & Xu, A. (2017). Enhanced Fenton, photo-Fenton and peroxidase-like activity and stability over Fe3O4/g-C3N4 nanocomposites. Chinese Journal of Catalysis, 38(12), 2110–2119.

    CAS  Google Scholar 

  • Schaate, A., Dühnen, S., Platz, G., Lilienthal, S., Schneider, A. M., & Behrens, P. (2012). A novel Zr-based porous coordination polymer containing azobenzenedicarboxylate as a linker. European Journal of Inorganic Chemistry, 2012(5), 790–796.

    CAS  Google Scholar 

  • Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., Gunten, U. v., et al. (2006). The challenge of micropollutants in aquatic systems. Science, 313(5790), 1072–1077.

  • Shakoor, M. B., Nawaz, R., Hussain, F., Raza, M., Ali, S., Rizwan, M., et al. (2017). Human health implications, risk assessment and remediation of As-contaminated water: a critical review. Science of the Total Environment, 601-602, 756–769.

    CAS  Google Scholar 

  • Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310.

    CAS  Google Scholar 

  • Sharma, V. K., & Graham, N. J. D. (2010). Oxidation of amino acids, peptides and proteins by ozone: a review. Ozone: Science & Engineering, 32(2), 81–90.

    CAS  Google Scholar 

  • Sharma, V. K., Zhao, J., & Hidaka, H. (2014). Mechanism of photocatalytic oxidation of amino acids: Hammett correlations. Catalysis Today, 224, 263–268.

    CAS  Google Scholar 

  • Shearer, G. C., Colombo, V., Chavan, S., Albanese, E., Civalleri, B., Maspero, A., et al. (2013). Stability vs. reactivity: understanding the adsorption properties of Ni3(BTP)2 by experimental and computational methods. Dalton Transactions, 42(18), 6450–6458.

    CAS  Google Scholar 

  • Shen, J.-Q., Liao, P.-Q., Zhou, D.-D., He, C.-T., Wu, J.-X., Zhang, W.-X., et al. (2017). Modular and stepwise synthesis of a hybrid metal–organic framework for efficient electrocatalytic oxygen evolution. Journal of the American Chemical Society, 139(5), 1778–1781.

    CAS  Google Scholar 

  • Slater, A. G., & Cooper, A. I. (2015). Function-led design of new porous materials. Science, 348(6238), aaa8075.

    Google Scholar 

  • Song, M., Wang, Y., Guo, Y., Wang, L., Zhan, W., Guo, Y., et al. (2017). Catalytic wet oxidation of aniline over Ru catalysts supported on a modified TiO2. Chinese Journal of Catalysis, 38(7), 1155–1165.

    CAS  Google Scholar 

  • Sun, M., Chu, C., Geng, F., Lu, X., Qu, J., Crittenden, J., et al. (2018). Reinventing Fenton chemistry: iron oxychloride nanosheet for pH-insensitive H2O2 activation. Environmental Science & Technology Letters, 5(3), 186–191.

    CAS  Google Scholar 

  • Sun, Q., Liu, M., Li, K., Zuo, Y., Han, Y., Wang, J., et al. (2015). Facile synthesis of Fe-containing metal–organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature. CrystEngComm, 17(37), 7160–7168.

    CAS  Google Scholar 

  • Tan, K., Nijem, N., Canepa, P., Gong, Q., Li, J., Thonhauser, T., et al. (2012). Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration. Chemistry of Materials, 24(16), 3153–3167.

    CAS  Google Scholar 

  • Tan, K., Nijem, N., Gao, Y., Zuluaga, S., Li, J., Thonhauser, T., et al. (2015). Water interactions in metal organic frameworks. CrystEngComm, 17(2), 247–260.

    CAS  Google Scholar 

  • Tang, J., & Wang, J. (2017). Fe-based metal organic framework/graphene oxide composite as an efficient catalyst for Fenton-like degradation of methyl orange. RSC Advances, 7(80), 50829–50837.

    CAS  Google Scholar 

  • Taylor, J. M., Vaidhyanathan, R., Iremonger, S. S., & Shimizu, G. K. H. (2012). Enhancing water stability of metal–organic frameworks via phosphonate monoester linkers. Journal of the American Chemical Society, 134(35), 14338–14340.

    CAS  Google Scholar 

  • Todaro, M., Buscarino, G., Sciortino, L., Alessi, A., Messina, F., Taddei, M., et al. (2016). Decomposition process of carboxylate MOF HKUST-1 unveiled at the atomic scale level. The Journal of Physical Chemistry C, 120(23), 12879–12889.

    CAS  Google Scholar 

  • Vitillo, J. G., Regli, L., Chavan, S., Ricchiardi, G., Spoto, G., Dietzel, P. D. C., et al. (2008). Role of exposed metal sites in hydrogen storage in MOFs. Journal of the American Chemical Society, 130(26), 8386–8396.

    CAS  Google Scholar 

  • Wan, W., Zhang, Y., Ji, R., Wang, B., & He, F. (2017). Metal foam-based Fenton-like process by aeration. ACS Omega, 2(9), 6104–6111.

    CAS  Google Scholar 

  • Wang, K., Huang, H., Xue, W., Liu, D., Zhao, X., Xiao, Y., et al. (2015). An ultrastable Zr metal–organic framework with a thiophene-type ligand containing methyl groups. CrystEngComm, 17(19), 3586–3590.

    CAS  Google Scholar 

  • Wang, K., Lv, X.-L., Feng, D., Li, J., Chen, S., Sun, J., et al. (2016a). Pyrazolate-based porphyrinic metal–organic framework with extraordinary base-resistance. Journal of the American Chemical Society, 138(3), 914–919.

    CAS  Google Scholar 

  • Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016b). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762–787.

    CAS  Google Scholar 

  • Wu, T., Shen, L., Luebbers, M., Hu, C., Chen, Q., Ni, Z., et al. (2010). Enhancing the stability of metal–organic frameworks in humid air by incorporating water repellent functional groups. Chemical Communications, 46(33), 6120–6122.

    CAS  Google Scholar 

  • Xiong, Z., Lai, B., & Yang, P. (2018). Insight into a highly efficient electrolysis-ozone process for N,N-dimethylacetamide degradation: quantitative analysis of the role of catalytic ozonation, fenton-like and peroxone reactions. Water Research, 140, 12–23.

    CAS  Google Scholar 

  • Xu, W.-T., Ma, L., Ke, F., Peng, F.-M., Xu, G.-S., Shen, Y.-H., et al. (2014). Metal–organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton Transactions, 43(9), 3792–3798.

    CAS  Google Scholar 

  • Yaghi, O. M., Kalmutzki, M. J., & Diercks, C. S. (2019). Metal-organic frameworks and covalent organic frameworks. In Introduction to reticular chemistry (pp. 453–462). Germany: Wiley-VCH. https://doi.org/10.1002/9783527821099.ch19.

    Chapter  Google Scholar 

  • Yang, J., Grzech, A., Mulder, F. M., & Dingemans, T. J. (2011). Methyl modified MOF-5: a water stable hydrogen storage material. Chemical Communications, 47(18), 5244–5246.

    CAS  Google Scholar 

  • Yang, Q., Guillerm, V., Ragon, F., Wiersum, A. D., Llewellyn, P. L., Zhong, C., et al. (2012). CH4 storage and CO2 capture in highly porous zirconium oxide based metal–organic frameworks. Chemical Communications, 48(79), 9831–9833.

    CAS  Google Scholar 

  • Yang, S., Chen, C., Yan, Z., Cai, Q., & Yao, S. (2013). Evaluation of metal-organic framework 5 as a new SPE material for the determination of polycyclic aromatic hydrocarbons in environmental waters. Journal of Separation Science, 36(7), 1283–1290.

    CAS  Google Scholar 

  • Yang, S., Wang, P., Yang, X., Wei, G., Zhang, W., & Shan, L. (2009). A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation. Journal of Environmental Sciences, 21(9), 1175–1180.

    CAS  Google Scholar 

  • Yang, S. J., & Park, C. R. (2012). Preparation of highly moisture-resistant black-colored metal organic frameworks. Advanced Materials, 24(29), 4010–4013.

    CAS  Google Scholar 

  • Yang, Y., Ok, Y. S., Kim, K.-H., Kwon, E. E., & Tsang, Y. F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment, 596-597, 303–320.

    CAS  Google Scholar 

  • Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., et al. (2018). Stable metal-organic frameworks: design, synthesis, and applications. Advanced Materials, 30(37), 1704303.

    Google Scholar 

  • Zhai, F., Zheng, Q., Chen, Z., Ling, Y., Liu, X., Weng, L., et al. (2013). Crystal transformation synthesis of a highly stable phosphonate MOF for selective adsorption of CO2. CrystEngComm, 15(11), 2040–2043.

    CAS  Google Scholar 

  • Zhang, T., & Lin, W. (2014). Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 43(16), 5982–5993.

    CAS  Google Scholar 

  • Zhang, Y., Yang, X., & Zhou, H.-C. (2018). Synthesis of MOFs for heterogeneous catalysis via linker design. Polyhedron, 154, 189–201.

    CAS  Google Scholar 

  • Zhao, S.-N., Song, X.-Z., Song, S.-Y., & Zhang, H.-j. (2017). Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. Coordination Chemistry Reviews, 337, 80–96.

    CAS  Google Scholar 

  • Zhou, H.-C., Long, J. R., & Yaghi, O. M. (2012). Introduction to metal–organic frameworks. Chemical Reviews, 112(2), 673–674.

    CAS  Google Scholar 

  • Zhu, B., Li, X.-S., Sun, P., Liu, J.-L., Ma, X.-Y., Zhu, X., et al. (2017). A novel process of ozone catalytic oxidation for low concentration formaldehyde removal. Chinese Journal of Catalysis, 38(10), 1759–1769.

    CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Petro China Innovation Foundation (No. 2016D-5007-0604), the Heilongjiang Province Natural Science Fund (No. B2015012), and the Applied Technology Research and Development Project of Heilongjiang Province (No. GC13C305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Wang.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Cao, X., Wang, S. et al. Research Progress on the Water Stability of a Metal-Organic Framework in Advanced Oxidation Processes. Water Air Soil Pollut 232, 18 (2021). https://doi.org/10.1007/s11270-020-04953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04953-9

Keywords

Navigation