Skip to main content
Log in

Enhancement of Zinc Ion Removal from Water by Physically Mixed Particles of Iron/Iron Sulfide

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Zinc (Zn) removal by physically mixed particles of zero-valent iron (Fe) and iron sulfide (FeS) was investigated as one technology for Zn removal from waste groundwater. The effects of the Fe/FeS mass ratio, including a single Fe and FeS particles, and pH on changes in the concentrations of Zn, Fe, and S were examined by a batch test and column tests, and the mechanism of Zn elimination was discussed. Among all the mixing fractions of Fe and FeS, Zn was eliminated most effectively by 3Fe/7FeS (mass ratio of Fe/FeS = 3/7). The Zn removal rate decreased in the order of 3Fe/7FeS, FeS, and Fe, whereas the Fe concentration decreased in the order of Fe, FeS, and 3Fe/7FeS. The S concentration of FeS was larger than that of 3Fe/7FeS. The Zn removal rate by physically mixed 3Fe/7FeS particles was enhanced by a local cell reaction between the Fe and FeS particles. The electrons caused by Fe corrosion moved to the FeS surface and reduced the dissolved oxygen in the solution. Zn2+, Fe2+, and OH ions in the solution were then coprecipitated on the particles as ZnFe2(OH)6 and oxidized to ZnFe2O4. Moreover, Zn2+ was sulfurized as ZnS by both the Fe/FeS mixture and the simple FeS particles. The Zn removal rate increased with increasing pH in the range from pH 3 to 7. From a kinetic analysis of Zn removal, the rate constant of anode (Fe)/cathode (FeS) reaction was almost the same as that of ZnS formation and slightly larger than that of Fe alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adeli, M., Yamini, Y., & Faraji, M. (2017). Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arabian Journal of Chemistry, 10, S514–S521.

    Article  CAS  Google Scholar 

  • Arao, T., Ishikawa, S., Murakami, M., Abe, K., Maejima, Y., & Makino, T. (2010). Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy and Water Environment, 8, 247–257.

    Article  Google Scholar 

  • Bhattacharya, A. K., Mandal, S. N., & Das, S. K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 123, 43–51(2006).

    Article  CAS  Google Scholar 

  • Cundy, A. B., Hopkinson, L., & Whitby, R. L. D. (2008). Use of iron-based technologies in contaminated land and groundwater remediation: A review. Science of the Total Environment, 400, 42–51.

    Article  CAS  Google Scholar 

  • Dan’azumi, S., Bichi, M. H., (2010). Industrial pollution and heavy metals profile of Challawa river in Kano, Nigeria. Journal of Applied Sciences and Environmental Sanitation, 5, 56–62.

  • Demiya, M., Uddin, M. A., & Kato, Y. (2018). Enhancement in trichloroethylene dechlorination by mixed particles of iron-iron disulfide or iron-iron sulfide. Journal of Environmental Chemical Engineering, 6, 1020–1026.

    Article  CAS  Google Scholar 

  • Dries, J., Bastiaens, L., Springael, D., Kuypers, S., Agathos, S. P., & Diels, L. (2005). Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems. Water Research, 39, 3531–3540.

    Article  CAS  Google Scholar 

  • Fosmire, G. J. (1990). Zinc toxicity. The American Journal of Clinical Nutrition, 51, 225–227.

    Article  CAS  Google Scholar 

  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267, 1994–1205.

    Article  Google Scholar 

  • Gong, Y., Gai, L., Tang, J., Fu, J., Wang, Q., & Zeng, E. Y. (2017). Reduction of Cr(VI) in simulated g groundwater by FeS-coated iron magnetic nanoparticles. Science of the Total Environment, 595, 743–751.

    Article  CAS  Google Scholar 

  • Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92, 2355–2388.

    Article  CAS  Google Scholar 

  • Inamoto, J. (2006). Waste water treatment for plating. Journal of the Surface Finishing Society of Japan, 57, 889–894.

    Article  CAS  Google Scholar 

  • Inglezakis, V. J., Loizidou, M. D., & Grigoropoulou, H. P. (2003). Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: Selectivity determination and influence of acidity on metal uptake. Journal of Colloid Science, 261, 49–54.

    Article  CAS  Google Scholar 

  • Iwasaki, Y., Kagaya, T., Miyamoto, K., & Matsuda, H. (2009). Effects of heavy metals on riverine benthic macroinvertebrate assemblages with reference to potential food availability for drift-feeding fishes. Environmental Toxicology and Chemistry, 28, 354–363.

    Article  CAS  Google Scholar 

  • Katsou, E., Malamis, S., & Haralambous, K. J. (2011). Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system. Chemosphere, 82, 557–564.

    Article  CAS  Google Scholar 

  • Kim, E.-J., Kim, J.-H., Azad, A.-M., & Chang, Y.-S. (2011). Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications. ACS Applied Materials & Interfaces, 3, 1457–1462.

    Article  CAS  Google Scholar 

  • Kim, E.-J., Kim, J.-H., Chang, Y.-S., Turcio-Ortega, D., & Trantnyek, P. G. (2014). Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles. Environmental Science & Technology, 48, 4002–4011.

    Article  CAS  Google Scholar 

  • Kim, E.-J., Murugesan, K., Kim, J.-H., Tratnyek, P. G., & Chang, Y.-S. (2013). Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: Effects of water chemistry. Industrial & Engineering Chemistry Research, 52, 9343–9350.

    Article  CAS  Google Scholar 

  • Kirkelund, G. M., Ottosen, L. M., & Villumsen, A. (2010). Investigation of Cu, Pb and Zn partitioning by sequential extraction in harbor sediments after electrodialytic remediation. Chemosphere, 79, 997–1002.

    Article  CAS  Google Scholar 

  • Kishimoto, N., Narazaki, Y., & Takemoto, K. (2018). Reusability of zero-valent iron particles for zinc ion separation. Separation and Purification Technology, 193, 139–146.

    Article  CAS  Google Scholar 

  • Kishimoto, N., Iwano, S., & Narazaki, Y. (2011). Mechanistic consideration of zinc ion removal by zero-valent iron. Water, Air, and Soil Pollution, 221, 183–189.

    Article  CAS  Google Scholar 

  • Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83–98.

    Article  CAS  Google Scholar 

  • Kwon, J.-S., Yun, S.-T., Kim, S.-O., Mayer, B., & Hutcheon, I. (2005). Sorption of Zn(II) in aqueous solutions by scoria. Chemosphere, 60, 1416–1426.

    Article  CAS  Google Scholar 

  • Lefevre, E., Bossa, N., Wiesner, M. R., & Gunsch, C. K. (2016). A review of environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Science of the Total Environment, 565, 889–901.

    Article  CAS  Google Scholar 

  • Lu, S., Gibb, S. W., & Cochrane, E. (2007). Effective removal of zinc ions from aqueous solutions using crab carapace biosorbent. Journal of Hazardous Materials, 149, 208–217.

    Article  CAS  Google Scholar 

  • Min, X., Li, Y., Ke, Y., Shi, M., Chai, L., & Xue, K. (2017). Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal. Water Science & Technology, 76, 192–200.

    Article  CAS  Google Scholar 

  • Ministry of the Environment, Government of Japan, (2006). https://www.env.go.jp/hourei/05/000001.html

  • Momodu, M. A., & Anyakora, C. A. (2010). Heavy metal contamination of ground water: The surulere case study. Research Journal Environmental and Earth Sciences, 2, 39–43.

    CAS  Google Scholar 

  • Nakamaru, H., Ono, T., Kato, Y., & Ogura, K. (2002). Effect of the microstructure of an iron powder on the reactivity with trichloroethylene. ACS Division of Environmental chemistry, 42, 555–559.

    CAS  Google Scholar 

  • Nakamaru, H., Ono, T., Kato, Y., & Ogura, K. (2006). Properties of sulfur-contained iron powder suitable for degradation of chlorinated organic compounds. Nihon Kinzoku Gakkai Shi, 70, 809–815.

    CAS  Google Scholar 

  • Noubactep, C. (2010). Elemental metals for environmental remediation: Learning from cementation process. Journal of Hazardous Materials, 181, 1170–1174.

    Article  CAS  Google Scholar 

  • Oh, B.-T., Lee, J.-Y., & Yoon, J. (2007). Removal of contaminants in leachate from landfill by waste steel scrap and converter slag. Environmental Geochemistry Health, 29, 331–336.

    Article  Google Scholar 

  • Ono, T., Nakamaru, H., Kato, Y., & Ogura, K. (2005). Iron powder for remediation of contaminated soil. JFE Giho, 7, 29–33.

    CAS  Google Scholar 

  • Rangsivek, R., & Jekel, M. R. (2005). Removal of dissolved metals by zero-valent iron (ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Research, 39, 4153–4163.

    Article  CAS  Google Scholar 

  • Shokes, T. E., & Moller, G. (1999). Removal of dissolved heavy metals from acid rock drainage using iron metal. Environmental Science and Technology, 33, 282–287.

    Article  CAS  Google Scholar 

  • Shiba, M., Uddin, M. A., Kato, Y., & Ono, T. (2014). Degradation of chlorinated organic compounds by mixed particles of iron/iron sulfide or iron/disulfide. Material Transactions, 55, 708–712.

    Article  CAS  Google Scholar 

  • Su, Y., Adeleye, A. S., Keller, A. A., Huang, Y., Dai, C., Zhou, X., & Zhang, Y. (2015). Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Research, 74, 47–57.

    Article  CAS  Google Scholar 

  • Tokumura, M., & Kawase, Y. (2013). Teppun (ZVI) wo motiita mizusyori gijyutu (water treatment technology by zero-valent iron (ZVI)). Yosui-toHaisui, 55, 574–581.

    CAS  Google Scholar 

  • Tosco, T., Papini, M. P., Viggi, C. C., & Sethi, R. (2014). Nanoscale zerovalent iron particles for groundwater remediation: A review. Journal of Cleaner Production, 77, 10–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiei Kato.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamba, Y., Ueta, M., Uddin, M.A. et al. Enhancement of Zinc Ion Removal from Water by Physically Mixed Particles of Iron/Iron Sulfide. Water Air Soil Pollut 232, 17 (2021). https://doi.org/10.1007/s11270-020-04966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04966-4

Keywords

Navigation