Skip to main content
Log in

Gas Biological Conversions: The Potential of Syngas and Carbon Dioxide as Production Platforms

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Contemporary challenges in decreasing Green House Gas emissions and finding alternative carbon and energy sources for fueling our society brought in the forefront processes based on biological conversions of gaseous substrates, such as syngas and carbon dioxide. Generation of synthesis gas or syngas (a gaseous mixture mainly of CO, H2 and CO2 generated during thermal decomposition of carbonaceous material in the presence of limited amount of an oxidizing agent) is known since the beginning of the 17th century and discovery of Fischer–Tropsch synthetic route in the beginning of the 20th century allowed the development of various routes for chemical catalytic synthesis of fuels and chemicals from syngas. Biological processing of syngas came in the forefront much later, following important advances within Microbiology and Biochemistry disciplines. This thermo-biochemical route for production of low-value products like fuels is considered competitive and advantageous compared to the thermochemical route when small-scale installations are concerned. Production of higher value products via the carboxylate platform is also a promising, and certainly worth-investigating route. Biological conversion of syngas and valorization of CO2 via biological means, besides contributing in greening our world, come with similar product portfolio and share the same technological challenges. Therefore, the target of the current study is to provide an overview of the latest scientific advances within syngas and CO2 valorization to fuels and chemicals and industrial applications and propose a way forward taking into account contemporary challenges and needs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kaupp, A., Goss, J.R.: Summary for policymakers. In: Intergovernmental Panel on Climate Change (ed.) Climate Change 2013: The Physical Science Basis, pp. 1–30. Cambridge University Press, Cambridge (2019)

    Google Scholar 

  2. Ernsting, A.: Biomass gasification and pyrolysis. http://www.biofuelwatch.org.uk/wp-content/uploads/Biomass-gasification-and-pyrolysis-formatted-full-report.pdf. (2015). Accessed 4 Jan 2021

  3. Drake, H.L., Küsel, K., Matthies, C.: Acetogenic prokaryotes. In: Rosenburg, E., Delong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds.) Prokaryotes, pp. 354–420. Springer, New York (2006)

    Chapter  Google Scholar 

  4. Grimalt-Alemany, A., Skiadas, I.V., Gavala, H.N.: Syngas biomethanation: State-of-the-art review and perspectives. Biofuels Bioprod. Biorefining. 12, 139–158 (2018). https://doi.org/10.1002/bbb.1826

    Article  Google Scholar 

  5. Reed, T.B. (1981) Biomass gasification : principles and technology. Noyes Data Corp (1981)

  6. Brown, R.C.: Biomass refineries based on hybrid thermochemical-biological processing: an overview. In: Kamm, B., Gruber, P.R., Kamm, M. (eds.) Biorefineries-Industrial Processes and Products, pp. 227–252. Wiley, Weinheim (2008)

    Google Scholar 

  7. Minchener, A.J.: Coal gasification for advanced power generation. Fuel 84, 2222–2235 (2005). https://doi.org/10.1016/j.fuel.2005.08.035

    Article  Google Scholar 

  8. Hall, D.O., Rosillo-Calle, F., Williams, R.H., Woods, J.: Biomass for energy: supply prospects. In: Johansson, T.B., Burnham, L. (eds.) Renewable Energy: Sources for Fuels and Electricity, pp. 593–651. Earthscan, London (1993)

    Google Scholar 

  9. Ghosh, P., Westhoff, P., Debnath, D.: Biofuels, food security, and sustainability. In: Biofuels, Bioenergy and Food Security, pp. 211–229. Elsevier, New York (2019)

    Chapter  Google Scholar 

  10. Naylor, R.L., Liska, A., Burke, M.B., Falcon, W.P., Gaskell, J.C., Rozelle, S.D., Cassman, K.G.: The ripple effect: biofuels, food security, and the environment. Environ. Sci. Policy Sustain. Dev. 49, 30–43 (2007). https://doi.org/10.3200/ENVT.49.9.30-43

    Article  Google Scholar 

  11. Kumar, A., Samadder, S.R.: A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag. 69, 407–422 (2017). https://doi.org/10.1016/j.wasman.2017.08.046

    Article  Google Scholar 

  12. Dieter Stapf, Giovanni Ceceri, Inge Johansson, Whitty, K.: Biomass pre-treatment for bioenergy case study 3: pretreatment of municipal solid waste (MSW) for gasification. https://www.ieabioenergy.com/wp-content/uploads/2019/02/CS3-MSW-pretreatment-for-gasification.pdf (2019). Accessed 4 Jan 2021

  13. Mateo-Sagasta, J., Raschid-Sally, L., Thebo, A.: Global wastewater and sludge production, treatment and use. In: Wastewater: Economic Asset in an Urbanizing World, pp. 15–38. Springer, New York (2015)

    Google Scholar 

  14. Syed-Hassan, S.S.A., Wang, Y., Hu, S., Su, S., Xiang, J.: Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 80, 888–913 (2017). https://doi.org/10.1016/j.rser.2017.05.262

    Article  Google Scholar 

  15. Sangeet, J.: Gas fermentation: a carbon recycling pathway. https://missionenergy.org/gasification2018/presentations/LanzaTech_Sangeet%20Jan.pdf (missionenergy.org) (2018). Accessed 4 Jan 2021

  16. Kundiyana, D.K., Wilkins, M.R., Maddipati, P., Huhnke, R.L.: Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by Clostridium ragsdalei. Bioresour. Technol. 102, 5794–5799 (2011). https://doi.org/10.1016/j.biortech.2011.02.032

    Article  Google Scholar 

  17. Ko, C.W., Vega, J.L., Clausen, E.C., Gaddy, J.L.: Effects of high pressure on a co-culture for the production of methane from coal synthesis gas. Chem. Eng. Comm. 77, 155–169 (1989)

    Article  Google Scholar 

  18. Ullrich, T., Lindner, J., Bär, K., Mörs, F., Graf, F., Lemmer, A.: Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors. Bioresour. Technol. 247, 7–13 (2018). https://doi.org/10.1016/j.biortech.2017.09.069

    Article  Google Scholar 

  19. Oswald, F., Stoll, I.K., Zwick, M., Herbig, S., Sauer, J., Boukis, N., Neumann, A.: Formic acid formation by Clostridium ljungdahlii at elevated pressures of carbon dioxide and hydrogen. Front. Bioeng. Biotechnol. (2018). https://doi.org/10.3389/fbioe.2018.00006

    Article  Google Scholar 

  20. Bredwell, M.D., Srivastava, P., Worden, R.M.: Reactor design issues for synthesis-gas fermentations. Biotechnol. Prog. 15, 834–844 (1999). https://doi.org/10.1021/bp990108m

    Article  Google Scholar 

  21. Richter, H., Martin, M.E., Angenent, L.T.: A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies 6, 3987–4000 (2013). https://doi.org/10.3390/en6083987

    Article  Google Scholar 

  22. Shen, Y., Brown, R., Wen, Z.: Syngas fermentation of Clostridium carboxidivorans P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance. Biochem. Eng. J. 85, 21–29 (2014). https://doi.org/10.1016/j.bej.2014.01.010

    Article  Google Scholar 

  23. Asimakopoulos, K., Łężyk, M., Grimalt-Alemany, A., Melas, A., Wen, Z., Gavala, H.N., Skiadas, I.V.: Temperature effects on syngas biomethanation performed in a trickle bed reactor. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124739

    Article  Google Scholar 

  24. Petersen, L.A.H., Villadsen, J., Jørgensen, S.B., Gernaey, K.V.: Mixing and mass transfer in a pilot scale U-loop bioreactor. Biotechnol. Bioeng. 114, 344–354 (2017). https://doi.org/10.1002/bit.26084

    Article  Google Scholar 

  25. Sathish, A., Sharma, A., Gable, P., Skiadas, I., Brown, R., Wen, Z.: A novel bulk-gas-to-atomized-liquid reactor for enhanced mass transfer efficiency and its application to syngas fermentation. Chem. Eng. J. 370, 60–70 (2019). https://doi.org/10.1016/j.cej.2019.03.183

    Article  Google Scholar 

  26. Arantes, A.L., Alves, J.I., Alfons, J.M., Alves, M.M., Sousa, D.Z.: Enrichment of syngas-converting communities from a multi-orifice baffled bioreactor. Microb. Biotechnol. (2017). https://doi.org/10.1111/1751-7915.12864

    Article  Google Scholar 

  27. Shen, Y., Brown, R.C., Wen, Z.: Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl. Energy 187, 585–594 (2017). https://doi.org/10.1016/j.apenergy.2016.11.084

    Article  Google Scholar 

  28. Chandolias, K., Pekgenc, E., Taherzadeh, M.J.: floating membrane bioreactors with high gas hold-up for syngas-to-biomethane conversion. Energies 12, 1–14 (2019). https://doi.org/10.3390/en12061046

    Article  Google Scholar 

  29. Park, J.O., Liu, N., Holinski, K.M., Emerson, D.F., Qiao, K., Woolston, B.M., Xu, J., Lazar, Z., Islam, M.A., Vidoudez, C., Girguis, P.R., Stephanopoulos, G.: Synergistic substrate cofeeding stimulates reductive metabolism. Nat. Metab. 1, 643–651 (2019). https://doi.org/10.1038/s42255-019-0077-0

    Article  Google Scholar 

  30. Maru, B.T., Munasinghe, P.C., Gilary, H., Jones, S.W., Tracy, B.P.: Fixation of CO2 and CO on a diverse range of carbohydrates using anaerobic, non-photosynthetic mixotrophy. FEMS Microbiol. Lett. 365, 1–8 (2018). https://doi.org/10.1093/femsle/fny039

    Article  Google Scholar 

  31. Asimakopoulos, K., Gavala, H.N., Skiadas, I.: V: Reactor systems for syngas fermentation processes: a review. Chem. Eng. J. 348, 732–744 (2018). https://doi.org/10.1016/j.cej.2018.05.003

    Article  Google Scholar 

  32. Van Hecke, W., Bockrath, R., De Wever, H.: Effects of moderately elevated pressure on gas fermentation processes. Bioresour. Technol. 293, 122129 (2019). https://doi.org/10.1016/j.biortech.2019.122129

    Article  Google Scholar 

  33. Emerson, D.F., Stephanopoulos, G.: Limitations in converting waste gases to fuels and chemicals. Curr. Opin. Biotechnol. 59, 39–45 (2019). https://doi.org/10.1016/j.copbio.2019.02.004

    Article  Google Scholar 

  34. Liu, H., Lee, C.F., Huo, M., Yao, M.: Comparison of ethanol and butanol as additives in soybean biodiesel using a constant volume combustion chamber. Energy Fuels 25, 1837–1846 (2011). https://doi.org/10.1021/ef200111g

    Article  Google Scholar 

  35. Ramesh, A., Ashok, B., Nanthagopal, K., Ramesh Pathy, M., Tambare, A., Mali, P., Phuke, P., Patil, S., Subbarao, R.: Influence of hexanol as additive with Calophyllum Inophyllum biodiesel for CI engine applications. Fuel 249, 472–485 (2019). https://doi.org/10.1016/j.fuel.2019.03.072

    Article  Google Scholar 

  36. Bengelsdorf, F.R., Beck, M.H., Erz, C., Hoffmeister, S., Karl, M.M., Riegler, P., Wirth, S., Poehlein, A., Weuster-Botz, D., Dürre, P.: Bacterial anaerobic synthesis gas (syngas) and CO2 + H2 fermentation. In: Advances in Applied Microbiology, pp. 143–221. Academic Press Inc, Cambridge (2018)

    Google Scholar 

  37. Bertsch, J., Müller, V.: Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol. Biofuels 8, 1–12 (2015). https://doi.org/10.1186/s13068-015-0393-x

    Article  Google Scholar 

  38. Richter, H., Molitor, B., Wei, H., Chen, W., Aristilde, L., Angenent, L.T.: Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression. Energy Environ. Sci. 9, 2392–2399 (2016). https://doi.org/10.1039/C6EE01108J

    Article  Google Scholar 

  39. Grimalt-Alemany, A., Lezyk, M., Lange, L., Skiadas, I.V., Gavala, H.N.: Enrichment of syngas-converting mixed microbial consortia for ethanol production and thermodynamics-based design of enrichment strategies. Biotechnol. Biofuels (2018). https://doi.org/10.1186/s13068-018-1189-6

    Article  Google Scholar 

  40. Zhu, H.-F., Liu, Z.-Y., Zhou, X., Yi, J.-H., Lun, Z.-M., Wang, S.-N., Tang, W.-Z., Li, F.-L.: Energy conservation and carbon flux distribution during fermentation of CO or H2/CO2 by Clostridium ljungdahlii. Front. Microbiol. (2020). https://doi.org/10.3389/fmicb.2020.00416

    Article  Google Scholar 

  41. Valgepea, K., de Souza Pinto, R., Abdalla, T., Binos, S., Takemori, N., Takemori, A., Tanaka, Y., Tappel, R., Köpke, M., Simpson, S.D., Nielsen, L.K., Marcellin, E.: H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum. Biotechnol. Biofuels 11, 55 (2018). https://doi.org/10.1186/s13068-018-1052-9

    Article  Google Scholar 

  42. Ukpong, M.N., Atiyeh, H.K., De Lorme, M.J.M., Liu, K., Zhu, X., Tanner, R.S., Wilkins, M.R., Stevenson, B.S.: Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor. Biotechnol. Bioeng. 109, 2720–2728 (2012). https://doi.org/10.1002/bit.24549

    Article  Google Scholar 

  43. Devarapalli, M., Atiyeh, H.K., Phillips, J.R., Lewis, R.S., Huhnke, R.L.: Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. Bioresour. Technol. 209, 56–65 (2016). https://doi.org/10.1016/j.biortech.2016.02.086

    Article  Google Scholar 

  44. Liu, K., Atiyeh, H.K., Tanner, R.S., Wilkins, M.R., Huhnke, R.L.: Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresour. Technol. 104, 336–341 (2012). https://doi.org/10.1016/j.biortech.2011.10.054

    Article  Google Scholar 

  45. Arslan, K., Bayar, B., Nalakath Abubackar, H., Veiga, M.C., Kennes, C.: Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas. Bioresour. Technol. 292, 121941 (2019). https://doi.org/10.1016/j.biortech.2019.121941

    Article  Google Scholar 

  46. Chakraborty, S., Rene, E.R., Lens, P.N.L., Veiga, M.C., Kennes, C.: Enrichment of a solventogenic anaerobic sludge converting carbon monoxide and syngas into acids and alcohols. Bioresour. Technol. 272, 130–136 (2019). https://doi.org/10.1016/j.biortech.2018.10.002

    Article  Google Scholar 

  47. Nagarajan, H., Sahin, M., Nogales, J., Latif, H., Lovley, D.R., Ebrahim, A., Zengler, K.: Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb. Cell Fact. 12, 1–13 (2013). https://doi.org/10.1186/1475-2859-12-118

    Article  Google Scholar 

  48. Marcellin, E., Behrendorff, J.B., Nagaraju, S., DeTissera, S., Segovia, S., Palfreyman, R.W., Daniell, J., Licona-Cassani, C., Quek, L., Speight, R., Hodson, M.P., Simpson, S.D., Mitchell, W.P., Köpke, M., Nielsen, L.K.: Low carbon fuels and commodity chemicals from waste gases: systematic approach to understand energy metabolism in a model acetogen. Green Chem. 18, 3020–3028 (2016). https://doi.org/10.1039/C5GC02708J

    Article  Google Scholar 

  49. Valgepea, K., de Souza Pinto, R., Abdalla, T., Binos, S., Takemori, N., Takemori, A., Tanaka, Y., Tappel, R., Köpke, M., Simpson, S.D., Nielsen, L.K., Marcellin, E.: Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens. Cell Syst. 4, 505–515 (2017). https://doi.org/10.1016/j.cels.2017.04.008

    Article  Google Scholar 

  50. Valgepea, K., Loi, K.Q., Behrendor, J.B., Lemgruber, R.D.S.P., Plan, M., Hodson, M.P., Köpke, M., Nielsen, L.K., Marcellin, E.: Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab. Eng. 41, 202–211 (2017). https://doi.org/10.1016/j.ymben.2017.04.007

    Article  Google Scholar 

  51. Chen, J., Gomez, J.A., Höffner, K., Barton, P.I., Henson, M.A.: Metabolic modeling of synthesis gas fermentation in bubble column reactors. Biotechnol. Biofuels 8, 1–12 (2015). https://doi.org/10.1186/s13068-015-0272-5

    Article  Google Scholar 

  52. Chen, J., Henson, M.A.: In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation. Metab. Eng. 38, 389–400 (2016). https://doi.org/10.1016/j.ymben.2016.10.002

    Article  Google Scholar 

  53. Greene, J., Daniell, J., Köpke, M., Broadbelt, L., Tyo, K.E.J.: Kinetic ensemble model of gas fermenting Clostridium autoethanogenum for improved ethanol production. Biochem. Eng. J. 148, 46–56 (2019). https://doi.org/10.1016/j.bej.2019.04.021

    Article  Google Scholar 

  54. Liew, F., Henstra, A.M., Kӧpke, M., Winzer, K., Simpson, S.D., Minton, N.P.: Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab. Eng. 40, 104–114 (2017). https://doi.org/10.1016/j.ymben.2017.01.007

    Article  Google Scholar 

  55. Cheng, C., Li, W., Lin, M., Yang, S.T.: Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose. Bioresour. Technol. 284, 415–423 (2019). https://doi.org/10.1016/j.biortech.2019.03.145

    Article  Google Scholar 

  56. Heiskanen, H., Virkajrvi, I., Viikari, L.: The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum. Enzyme Microb. Technol. 41, 362–367 (2007). https://doi.org/10.1016/j.enzmictec.2007.03.004

    Article  Google Scholar 

  57. Phillips, J.R., Atiyeh, H.K., Tanner, R.S., Torres, J.R., Saxena, J., Wilkins, M.R., Huhnke, R.L.: Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour. Technol. 190, 114–121 (2015). https://doi.org/10.1016/j.biortech.2015.04.043

    Article  Google Scholar 

  58. Jeong, J., Bertsch, J., Hess, V., Choi, S., Choi, I.-G., Chang, I.S., Müller, V.: Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen. Appl. Environ. Microbiol. 81, 4782–4790 (2015). https://doi.org/10.1128/AEM.00675-15

    Article  Google Scholar 

  59. Maddipati, P., Atiyeh, H.K., Bellmer, D.D., Huhnke, R.L.: Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour. Technol. 102, 6494–6501 (2011). https://doi.org/10.1016/j.biortech.2011.03.047

    Article  Google Scholar 

  60. Ganigué, R., Sánchez-paredes, P., Bañeras, L., Colprim, J.: Low Fermentation pH is a trigger to alcohol production, but a killer to chain elongation. Front. Microbiol. 7, 1–11 (2016). https://doi.org/10.3389/fmicb.2016.00702

    Article  Google Scholar 

  61. Richter, H., Molitor, B., Diender, M., Sousa, D.Z., Angenent, L.T.: A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction. Front. Microbiol. 7, 2392–2399 (2016). https://doi.org/10.3389/fmicb.2016.01773

    Article  Google Scholar 

  62. Köpke, M., Liew, F.: Production of butanol from carbon monoxide by a recombinant microorganism, WO 2012/053905 Al, (2012)

  63. Köpke, M., Held, C., Hujer, S., Liesegang, H., Wiezer, A., Wollherr, A., Ehrenreich, A., Liebl, W., Gottschalk, G., Dürre, P.: Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. 107, 13087–13092 (2010). https://doi.org/10.1073/pnas.1011320107

    Article  Google Scholar 

  64. Zhang, J., Taylor, S., Wang, Y.: Effects of end products on fermentation profiles in Clostridium carboxidivorans P7 for syngas fermentation. Bioresour. Technol. 218, 1055–1063 (2016). https://doi.org/10.1016/j.biortech.2016.07.071

    Article  Google Scholar 

  65. Wang, H.J., Dai, K., Xia, X.Y., Wang, Y.Q., Zeng, R.J., Zhang, F.: Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor. J. Clean. Prod. 187, 165–170 (2018). https://doi.org/10.1016/j.jclepro.2018.03.193

    Article  Google Scholar 

  66. Abubackar, H.N., Fernández-Naveira, Á., Veiga, M.C., Kennes, C.: Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum. Fuel 178, 56–62 (2016). https://doi.org/10.1016/j.fuel.2016.03.048

    Article  Google Scholar 

  67. Fernández-Naveira, Á., Abubackar, H.N., Veiga, M.C., Kennes, C.: Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans. Appl. Microbiol. Biotechnol. 100, 3361–3370 (2016). https://doi.org/10.1007/s00253-015-7238-1

    Article  Google Scholar 

  68. Shen, S., Gu, Y., Chai, C., Jiang, W., Zhuang, Y., Wang, Y.: Enhanced alcohol titre and ratio in carbon monoxide-rich off-gas fermentation of Clostridium carboxidivorans through combination of trace metals optimization with variable-temperature cultivation. Bioresour. Technol. 239, 236–243 (2017). https://doi.org/10.1016/j.biortech.2017.04.099

    Article  Google Scholar 

  69. Sun, X., Atiyeh, H.K., Kumar, A., Zhang, H., Tanner, R.S.: Biochar enhanced ethanol and butanol production by Clostridium carboxidivorans from syngas. Bioresour. Technol. 265, 128–138 (2018). https://doi.org/10.1016/j.biortech.2018.05.106

    Article  Google Scholar 

  70. Acharya, B., Dutta, A., Basu, P.: Ethanol production by syngas fermentation in a continuous stirred tank bioreactor using Clostridium ljungdahlii. Biofuels 10, 221–237 (2019). https://doi.org/10.1080/17597269.2017.1316143

    Article  Google Scholar 

  71. Grimalt-Alemany, A., Łężyk, M., Asimakopoulos, K., Skiadas, I.V., Gavala, H.N.: Cryopreservation and fast recovery of enriched syngas-converting microbial communities. Water Res. 177, 115747 (2020). https://doi.org/10.1016/J.WATRES.2020.115747

    Article  Google Scholar 

  72. Doll, K., Rückel, A., Kämpf, P., Wende, M., Weuster-Botz, D.: Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioprocess Biosyst. Eng. 41, 1–14 (2018). https://doi.org/10.1007/s00449-018-1969-1

    Article  Google Scholar 

  73. Phillips, J.R., Klasson, K.T., Clausen, E.C., Gaddy, J.L.: Biological production of ethanol from coal synthesis gas. Appl. Biochem. Biotechnol. 39–40, 559–571 (1993). https://doi.org/10.1007/BF02919018

    Article  Google Scholar 

  74. Wang, S., Zhu, Y., Zhang, Y., Li, Y.: Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity. Appl. Microbiol. Biotechnol. 93, 1021–1030 (2012). https://doi.org/10.1007/s00253-011-3570-2

    Article  Google Scholar 

  75. Panneerselvam, A., Wilkins, M.R., Delorme, M.J.M., Atiyeh, H.K., Huhnke, R.L.: Effects of various reducing agents on syngas fermentation by “Clostridium ragsdalei”. Biol. Eng. 2, 135–144 (2010)

    Article  Google Scholar 

  76. Whitham, J.M., Tirado-Acevedo, O., Chinn, M.S., Pawlak, J.J., Grunden, A.M.: Metabolic response of Clostridium ljungdahlii to oxygen exposure. Appl. Environ. Microbiol. 81, 8379–8391 (2015). https://doi.org/10.1128/AEM.02491-15

    Article  Google Scholar 

  77. Araújo, W.D., Carrhá, R., Gehring, T.A., Angenent, L.T., Tédde, S.: Anaerobic fermentation for n- caproic acid production: a review. Process Biochem. 54, 106–119 (2017). https://doi.org/10.1016/j.procbio.2016.12.024

    Article  Google Scholar 

  78. Angenent, L.T., Richter, H., Buckel, W., Spirito, C.M., Steinbusch, K.J., Plugge, C., Strik, D.P.B.T.B., Grootscholten, T.I.M., Buisman, C.J.N., Hamelers, H.V.M.: Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ. Sci. Technol. 50, 2796–2810 (2016). https://doi.org/10.1021/acs.est.5b04847

    Article  Google Scholar 

  79. Agler, M.T., Wrenn, B.A., Zinder, S.H., Angenent, L.T.: Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol. 29, 70–78 (2011). https://doi.org/10.1016/j.tibtech.2010.11.006

    Article  Google Scholar 

  80. Smith, A.D., Landoll, M., Falls, M., Holtzapple, M.T.: Chemical production from lignocellulosic biomass: thermochemical, sugar and carboxylate platforms. In: Bioalcohol Production, pp. 391–414. Elsevier, New York (2010)

    Chapter  Google Scholar 

  81. Fernández-Naveira, Á., Veiga, M.C., Kennes, C.: Selective anaerobic fermentation of syngas into either C2–C6 organic acids or ethanol and higher alcohols. Bioresour. Technol. 280, 387–395 (2019). https://doi.org/10.1016/j.biortech.2019.02.018

    Article  Google Scholar 

  82. Ueki, T., Nevin, K.P., Woodard, T.L., Lovley, D.R.: Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio 5, 1–10 (2014). https://doi.org/10.1128/mBio.01636-14.Editor

    Article  Google Scholar 

  83. Zhao, R., Liu, Y., Zhang, H., Chai, C., Wang, J., Jiang, W., Gu, Y.: CRISPR-Cas12a-mediated gene deletion and regulation in Clostridium ljungdahlii and its application in carbon flux redirection in synthesis gas fermentation. ACS Synth. Biol. 8, 2270–2279 (2019). https://doi.org/10.1021/acssynbio.9b00033

    Article  Google Scholar 

  84. Diender, M., Stams, A.J.M., Sousa, D.Z.: Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas. Biotechnol. Biofuels 9, 82 (2016). https://doi.org/10.1186/s13068-016-0495-0

    Article  Google Scholar 

  85. He, P., Han, W., Shao, L., Lü, F.: One-step production of C6–C8 carboxylates by mixed culture solely grown on CO. Biotechnol. Biofuels 11, 1–13 (2018). https://doi.org/10.1186/s13068-017-1005-8

    Article  Google Scholar 

  86. Vasudevan, D., Richter, H., Angenent, L.T.: Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. Bioresour. Technol. 151, 378–382 (2014). https://doi.org/10.1016/j.biortech.2013.09.105

    Article  Google Scholar 

  87. Zhang, F., Ding, J., Zhang, Y., Chen, M., Ding, Z., Loosdrecht, M.C.M.V., Zeng, R.J.: Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res. 47, 6122–6129 (2013). https://doi.org/10.1016/j.watres.2013.07.033

    Article  Google Scholar 

  88. Kucek, L.A., Spirito, C.M., Angenent, L.T.: High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation †. Energy Environ. Sci. 9, 3482–3494 (2016). https://doi.org/10.1039/c6ee01487a

    Article  Google Scholar 

  89. Scarborough, M.J., Lawson, C.E., Hamilton, J.J., Donohue, T.J., Noguera, D.R.: Metatranscriptomic and thermodynamic insights into medium-chain fatty acid production using an anaerobic microbiome. mSystems 3, 1–21 (2018). https://doi.org/10.1128/msystems.00221-18

    Article  Google Scholar 

  90. Shen, N., Dai, K., Xia, X.Y., Zeng, R.J., Zhang, F.: Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors. J. Clean. Prod. 202, 536–542 (2018). https://doi.org/10.1016/j.jclepro.2018.08.162

    Article  Google Scholar 

  91. Wang, H.J., Dai, K., Wang, Y.Q., Wang, H.F., Zhang, F., Zeng, R.J.: Mixed culture fermentation of synthesis gas in the microfiltration and ultrafiltration hollow-fiber membrane biofilm reactors. Bioresour. Technol. 267, 650–656 (2018). https://doi.org/10.1016/j.biortech.2018.07.098

    Article  Google Scholar 

  92. Baleeiro, F.C.F., Kleinsteuber, S., Neumann, A., Sträuber, H.: Syngas-aided anaerobic fermentation for medium-chain carboxylate and alcohol production: the case for microbial communities. Appl. Microbiol. Biotechnol. (2019). https://doi.org/10.1007/s00253-019-10086-9

    Article  Google Scholar 

  93. IEA: World Energy Outlook 2019. IEA, Paris (2019)

    Google Scholar 

  94. Prussi, M., Padella, M., Conton, M., Postma, E.D., Lonza, L.: Review of technologies for biomethane production and assessment of Eu transport share in 2030. J. Clean. Prod. 222, 565–572 (2019). https://doi.org/10.1016/j.jclepro.2019.02.271

    Article  Google Scholar 

  95. Liu, Y., Whitman, W.B.: Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea. Ann. N. Y. Acad. Sci. 1125, 171–189 (2008). https://doi.org/10.1196/annals.1419.019

    Article  Google Scholar 

  96. Daniels, L., Fuchs, G., Thauer, R.K., Zeikus, J.G.: Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132, 118–126 (1977)

    Article  Google Scholar 

  97. O’Brien, J.M., Wolkin, R.H., Moench, T.T., Morgan, J.B., Zeikus, J.G.: Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J. Bacteriol. 158, 373–375 (1984)

    Article  Google Scholar 

  98. Rother, M., Metcalf, W.W.: Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc. Natl. Acad. Sci. USA 101, 16929–16934 (2004). https://doi.org/10.1073/pnas.0407486101

    Article  Google Scholar 

  99. Diender, M., Pereira, R., Wessels, H.J.C.T., Stams, A.J.M., Sousa, D.Z.: Proteomic analysis of the hydrogen and carbon monoxide metabolism of Methanothermobacter marburgensis. Front. Microbiol. 7, 1–10 (2016). https://doi.org/10.3389/fmicb.2016.01049

    Article  Google Scholar 

  100. Ahrens, T., Fontaine, D., Hafenbradl, D., Hoerl, M., Pesic, A., Tavares Silva, K.: Method to use industrial CO2 containing gas for the production of a methane enriched gas composition, World International Property Organization, WO2020089181A1, (2020)

  101. Diender, M., Uhl, P.S., Bitter, J.H., Stams, A.J.M., Sousa, D.Z.: High rate biomethanation of carbon monoxide-rich gases via a thermophilic synthetic coculture. ACS Sustain. Chem. Eng. 6, 2169–2176 (2018). https://doi.org/10.1021/acssuschemeng.7b03601

    Article  Google Scholar 

  102. Kimmel, D.E., Klasson, K.T., Clausen, E.C., Gaddy, J.L.: Performance of trickle-bed bioreactors for converting synthesis gas to methane. Appl. Biochem. Biotechnol. 28–9, 457–469 (1991). https://doi.org/10.1007/BF02922625

    Article  Google Scholar 

  103. Klasson, K.T., Cowger, J.P., Ko, C.W., Vega, J.L., Clausen, E.C., Gaddy, J.L.: Methane production from synthesis gas using a mixed culture of R. rubrum M. barkeri, and M. formicicum. Appl. Biochem. Biotechnol. 24–25, 317–328 (1990)

    Article  Google Scholar 

  104. IEA Bioenergy Task 37: IEA bioenergy taske 37: country reports summaries 2019. IEA Bioenergy, Paris (2020)

    Google Scholar 

  105. Villadsen, S.N.B., Fosbøl, P.L., Angelidaki, I., Woodley, J.M., Nielsen, L.P., Møller, P.: The potential of biogas; the solution to energy storage. Chemsuschem 12, 2147–2153 (2019). https://doi.org/10.1002/cssc.201900100

    Article  Google Scholar 

  106. Thema, M., Weidlich, T., Hörl, M., Bellack, A., Mörs, F., Hackl, F., Kohlmayer, M., Gleich, J., Stabenau, C., Trabold, T., Neubert, M., Ortloff, F., Brotsack, R., Schmack, D., Huber, H., Hafenbradl, D., Karl, J., Sterner, M.: Biological CO2-methanation: an approach to standardization. Energies 12, 1670 (2019). https://doi.org/10.3390/en12091670

    Article  Google Scholar 

  107. Bailera, M., Lisbona, P., Romeo, L.M., Espatolero, S.: Power to Gas projects review: lab, pilot and demo plants for storing renewable energy and CO2. Renew. Sustain. Energy Rev. 69, 292–312 (2017). https://doi.org/10.1016/j.rser.2016.11.130

    Article  Google Scholar 

  108. Thema, M., Bauer, F., Sterner, M.: Power-to-gas: electrolysis and methanation status review. Renew. Sustain. Energy Rev. 112, 775–787 (2019). https://doi.org/10.1016/j.rser.2019.06.030

    Article  Google Scholar 

  109. Khan, M.A., Zhao, H., Zou, W., Chen, Z., Cao, W., Fang, J., Xu, J., Zhang, L., Zhang, J.: Recent progresses in electrocatalysts for water electrolysis. Electrochem. Energy Rev. 1, 483–530 (2018). https://doi.org/10.1007/s41918-018-0014-z

    Article  Google Scholar 

  110. Lecker, B., Illi, L., Lemmer, A., Oechsner, H.: Biological hydrogen methanation: a review. Bioresour. Technol. 245, 1220–1228 (2017). https://doi.org/10.1016/j.biortech.2017.08.176

    Article  Google Scholar 

  111. Bassani, I., Kougias, P.G., Treu, L., Angelidaki, I.: Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions. Env. Sci Technol. 49, 12585–12593 (2015). https://doi.org/10.1021/acs.est.5b03451

    Article  Google Scholar 

  112. Agneessens, L.M., Ottosen, L.D.M., Andersen, M., Berg Olesen, C., Feilberg, A., Kofoed, M.V.W.: Parameters affecting acetate concentrations during in-situ biological hydrogen methanation. Bioresour. Technol. 258, 33–40 (2018). https://doi.org/10.1016/j.biortech.2018.02.102

    Article  Google Scholar 

  113. Wahid, R., Mulat, D.G., Gaby, J.C., Horn, S.J.: Effects of H2:CO2 ratio and H2 supply fluctuation on methane content and microbial community composition during in-situ biological biogas upgrading. Biotechnol. Biofuels 12, 104 (2019). https://doi.org/10.1186/s13068-019-1443-6

    Article  Google Scholar 

  114. Corbellini, V., Catenacci, A., Malpei, F.: Hydrogenotrophic biogas upgrading integrated into WWTPs: enrichment strategy. Water Sci Technol. 79, 759–770 (2019). https://doi.org/10.2166/wst.2019.096

    Article  Google Scholar 

  115. Alfaro, N., María, F.-P., Fernando, F.-P., Díaz, I.: H2 addition through a submerged membrane for in-situ biogas upgrading in the anaerobic digestion of sewage sludge. Bioresour. Technol. 280, 1–8 (2019). https://doi.org/10.1016/j.biortech.2019.01.135

    Article  Google Scholar 

  116. Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., Kougias, P.G.: Biogas upgrading and utilization: current status and perspectives. Biotechnol. Adv. 36, 452–466 (2018). https://doi.org/10.1016/j.biotechadv.2018.01.011

    Article  Google Scholar 

  117. Porté, H., Kougias, P.G., Alfaro, N., Treu, L., Campanaro, S., Angelidaki, I.: Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading. Sci. Total Environ. 655, 529–538 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.289

    Article  Google Scholar 

  118. Ullrich, T., Lemmer, A.: Performance enhancement of biological methanation with trickle bed reactors by liquid flow modulation. GCB Bioenergy 11, 63–71 (2019). https://doi.org/10.1111/gcbb.12547

    Article  Google Scholar 

  119. Liotta, F., Chatellier, P., Esposito, G., Fabbricino, M., Van Hullebusch, E.D., Lens, P.N.L.: Hydrodynamic mathematical modelling of aerobic plug flow and nonideal flow reactors: a critical and historical review. Crit. Rev. Environ. Sci. Technol. 44, 2642–2673 (2014). https://doi.org/10.1080/10643389.2013.829768

    Article  Google Scholar 

  120. Wang, Y., Chen, J., Larachi, F.: Modelling and simulation of trickle-bed reactors using computational fluid dynamics: a state-of-the-art review. Can. J. Chem. Eng. 91, 136–180 (2013). https://doi.org/10.1002/cjce.20702

    Article  Google Scholar 

  121. Markthaler, S., Plankenbühler, T., Weidlich, T., Neubert, M., Karl, J.: Numerical simulation of trickle bed reactors for biological methanation. Chem. Eng. Sci. 226, 115847 (2020). https://doi.org/10.1016/j.ces.2020.115847

    Article  Google Scholar 

  122. Aryal, N., Kvist, T., Ammam, F., Pant, D., Ottosen, L.: An overview of microbial biogas enrichment. Bioresour. Technol. 264, 359–369 (2018). https://doi.org/10.1016/j.biortech.2018.06.013

    Article  Google Scholar 

  123. Cheng, S., Xing, D., Call, D.F., Logan, B.E.: Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953–3958 (2009). https://doi.org/10.1021/es803531g

    Article  Google Scholar 

  124. Zhang, Z., Song, Y., Zheng, S., Zhen, G., Lu, X., Kobayashi, T., Xu, K., Bakonyi, P.: Electro-conversion of carbon dioxide (CO2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: The current status and future perspective. Bioresour. Technol. 279, 339–349 (2019). https://doi.org/10.1016/j.biortech.2019.01.145

    Article  Google Scholar 

  125. Zhou, H., Xing, D., Xu, M., Su, Y., Zhang, Y.: Biogas upgrading and energy storage via electromethanogenesis using intact anaerobic granular sludge as biocathode. Appl. Energy 269, 115101 (2020). https://doi.org/10.1016/j.apenergy.2020.115101

    Article  Google Scholar 

  126. Liu, Y., Li, Y., Gan, R., Jia, H., Yong, X., Yong, Y.-C., Wu, X., Wei, P., Zhou, J.: Enhanced biogas production from swine manure anaerobic digestion via in-situ formed graphene in electromethanogenesis system. Chem. Eng. J. 389, 124510 (2020). https://doi.org/10.1016/j.cej.2020.124510

    Article  Google Scholar 

  127. Lin, R., Cheng, J., Zhang, J., Zhou, J., Cen, K., Murphy, J.D.: Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol. 239, 345–352 (2017). https://doi.org/10.1016/j.biortech.2017.05.017

    Article  Google Scholar 

  128. Tian, T., Qiao, S., Li, X., Zhang, M., Zhou, J.: Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour. Technol. 224, 41–47 (2017). https://doi.org/10.1016/j.biortech.2016.10.058

    Article  Google Scholar 

  129. Vu, M.T., Noori, M.T., Min, B.: Magnetite/zeolite nanocomposite-modified cathode for enhancing methane generation in microbial electrochemical systems. Chem. Eng. J. 393, 124613 (2020). https://doi.org/10.1016/j.cej.2020.124613

    Article  Google Scholar 

  130. Bu, F., Dong, N., Kumar Khanal, S., Xie, L., Zhou, Q.: Effects of CO on hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions: microbial community and biomethanation pathways. Bioresour. Technol. 266, 364–373 (2018). https://doi.org/10.1016/j.biortech.2018.03.092

    Article  Google Scholar 

  131. Navarro, S.S., Cimpoia, R., Bruant, G., Guiot, S.R.: Biomethanation of syngas using anaerobic sludge: shift in the catabolic routes with the CO partial pressure increase. Front. Microbiol. 7, 1–13 (2016). https://doi.org/10.3389/fmicb.2016.01188

    Article  Google Scholar 

  132. Grimalt-Alemany, A., Łężyk, M., Kennes-Veiga, D.M., Skiadas, I.V., Gavala, H.N.: Enrichment of mesophilic and thermophilic mixed microbial consortia for syngas biomethanation: the role of kinetic and thermodynamic competition. Waste Biomass Valoriz. 11, 465–481 (2020). https://doi.org/10.1007/s12649-019-00595-z

    Article  Google Scholar 

  133. Grimalt-Alemany, A., Asimakopoulos, K., Skiadas, I.V., Gavala, H.N.: Modeling of syngas biomethanation and catabolic route control in mesophilic and thermophilic mixed microbial consortia. Appl. Energy 262, 114502 (2020). https://doi.org/10.1016/j.apenergy.2020.114502

    Article  Google Scholar 

  134. Arantes, A.L., Alves, J.I., Stams, A.J.M., Alves, M.M., Sousa, D.Z.: Enrichment of syngas-converting communities from a multi-orifice baffled bioreactor. Microb. Biotechnol. 11, 639–646 (2018). https://doi.org/10.1111/1751-7915.12864

    Article  Google Scholar 

  135. Asimakopoulos, K., Gavala, H.N., Skiadas, I.: V: Biomethanation of syngas by enriched mixed anaerobic consortia in trickle bed reactors. Waste Biomass Valoriz. 11, 495–512 (2020). https://doi.org/10.1007/s12649-019-00649-2

    Article  Google Scholar 

  136. Westman, S., Chandolias, K., Taherzadeh, M.: Syngas biomethanation in a semi-continuous reverse membrane bioreactor (RMBR). Fermentation 2, 1–12 (2016). https://doi.org/10.3390/fermentation2020008

    Article  Google Scholar 

  137. Youngsukkasem, S., Chandolias, K., Taherzadeh, M.J.: Rapid bio-methanation of syngas in a reverse membrane bioreactor: membrane encased microorganisms. Bioresour. Technol. 178, 334–340 (2014). https://doi.org/10.1016/j.biortech.2014.07.071

    Article  Google Scholar 

  138. Lü, F., Guo, K., Duan, H., Shao, L., He, P.: Exploit carbon materials to accelerate initiation and enhance process stability of CO anaerobic open-culture fermentation. ACS Sustain. Chem. Eng. 6, 2787–2796 (2018). https://doi.org/10.1021/acssuschemeng.7b04589

    Article  Google Scholar 

  139. Schwede, S., Bruchmann, F., Thorin, E., Gerber, M.: Biological syngas methanation via immobilized methanogenic archaea on biochar. Energy Proc. 105, 823–829 (2017). https://doi.org/10.1016/j.egypro.2017.03.396

    Article  Google Scholar 

  140. Luo, G., Jing, Y., Lin, Y., Zhang, S., An, D.: A novel concept for syngas biomethanation by two-stage process: focusing on the selective conversion of syngas to acetate. Sci. Total Environ. 645, 1194–1200 (2018). https://doi.org/10.1016/j.scitotenv.2018.07.263

    Article  Google Scholar 

  141. Rao, Y., Wan, J., Liu, Y., Angelidaki, I., Zhang, S., Zhang, Y., Luo, G.: A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge. Water Res. 139, 372–380 (2018). https://doi.org/10.1016/j.watres.2018.04.026

    Article  Google Scholar 

  142. Wang, Y.-Q., Yu, S.-J., Zhang, F., Xia, X.-Y., Zeng, R.J.: Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation. Appl. Microbiol. Biotechnol. 101, 2619–2627 (2017). https://doi.org/10.1007/s00253-017-8124-9

    Article  Google Scholar 

  143. Zhang, L., Zhao, R., Jia, D., Jiang, W., Gu, Y.: Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals. Curr. Opin. Chem. Biol. 59, 54–61 (2020). https://doi.org/10.1016/j.cbpa.2020.04.010

    Article  Google Scholar 

  144. Hoffmeister, S., Gerdom, M., Bengelsdorf, F.R., Linder, S., Flüchter, S., Öztürk, H., Blümke, W., May, A., Fischer, R.J., Bahl, H., Dürre, P.: Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab. Eng. 36, 37–47 (2016). https://doi.org/10.1016/j.ymben.2016.03.001

    Article  Google Scholar 

  145. Woolston, B.M., Emerson, D.F., Currie, D.H., Stephanopoulos, G.: Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metab. Eng. 48, 243–253 (2018). https://doi.org/10.1016/j.ymben.2018.06.006

    Article  Google Scholar 

  146. de Souza Pinto, R., Valgepea, K., Tappel, R., Behrendorff, J.B., Palfreyman, R.W., Plan, M., Hodson, M.P., Simpson, S.D., Nielsen, L.K., Köpke, M., Marcellin, E.: Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab Eng. 53(14), 23 (2019). https://doi.org/10.1016/j.ymben.2019.01.003

    Article  Google Scholar 

  147. Heinrich, D., Raberg, M., Fricke, P., Kenny, S.T., Morales-Gamez, L., Babu, R.P., O’Connor, K.E., Steinbuechel, A.: Synthesis gas (syngas)-derived medium-chain-length polyhydroxyalkanoate synthesis in engineered Rhodospirillum rubrum. Appl. Environ. Microbiol. 82, 6132–6140 (2016). https://doi.org/10.1128/AEM.01744-16

    Article  Google Scholar 

  148. Meyer, O.: Using carbon monoxide to produce single-cell protein. Bioscience 30, 405–407 (1980)

    Article  Google Scholar 

  149. Matassa, S., Verstraete, W., Pikaar, I., Boon, N.: Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Res. 101, 137–146 (2016). https://doi.org/10.1016/j.watres.2016.05.077

    Article  Google Scholar 

  150. Charubin, K., Papoutsakis, E.T.: Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space. Metab. Eng. 52, 9–19 (2019). https://doi.org/10.1016/j.ymben.2018.10.006

    Article  Google Scholar 

  151. Hwang, H.W., Yoon, J., Min, K., Kim, M.S., Kim, S.J., Cho, D.H., Susila, H., Na, J.G., Oh, M.K., Kim, Y.H.: Two-stage bioconversion of carbon monoxide to biopolymers via formate as an intermediate. Chem. Eng. J. 389, 124394 (2020). https://doi.org/10.1016/j.cej.2020.124394

    Article  Google Scholar 

  152. Lagoa-Costa, B., Nalakath Abubackar, H., Fernandez-Romasanta, M., Kennes, C., Veiga, M.C.: Integrated bioconversion of syngas into bioethanol and biopolymers. Bioresour. Technol. 239, 244–249 (2017). https://doi.org/10.1016/j.biortech.2017.05.019

    Article  Google Scholar 

  153. Oswald, F., Dörsam, S., Veith, N., Zwick, M., Neumann, A.: Sequential mixed cultures: from syngas to malic acid. Front. Microbial. 7, 1–12 (2016). https://doi.org/10.3389/fmicb.2016.00891

    Article  Google Scholar 

  154. Stoll, I.K., Boukis, N., Sauer, J.: Syngas fermentation to alcohols: reactor technology and application perspective. Chem. Ing. Tech. 92, 125–136 (2020). https://doi.org/10.1002/cite.201900118

    Article  Google Scholar 

  155. Sangeet Jan: Gas fermentation: a carbon recycling pathway In: Gasification India 2018. https://gasification2018.missionenergy.org/presentations/LanzaTech_SangeetJan.pdf, New Delhi, India. (2018)

  156. Li, X.: System and method for improved gas dissolution United States Patent, US9327251B2, (2016)

  157. Molitor, B., Richter, H., Martin, M.E., Jensen, R.O., Juminaga, A., Mihalcea, C., Angenent, L.T.: Carbon recovery by fermentation of CO-rich off gases: turning steel mills into biorefineries. Bioresour. Technol. 215, 386–396 (2016). https://doi.org/10.1016/j.biortech.2016.03.094

    Article  Google Scholar 

  158. The Fish Site: Capturing carbon for the aquafeed sector. https://thefishsite.com/articles/capturing-carbon-for-the-aquafeed-sector (2020). Accessed 17 Nov 2020.

  159. Dalla-Betta, P., Reed, J.S.: Method and apparatus for growing microbial cultures that require gaseous electron donors, electron acceptors, carbon sources, or other nutrients; United States Patent, US20160102287A1, (2016)

  160. Reed, J.S., Geller, J., Hande, S.: Microorganisms and artificial ecosystems for the production of protein, food, and useful co-products from c1 substrates, World International Property Organization, WO2017165244A1, (2017)

  161. Oesterholt, F., Matassa, S., Palmen, L., Roest, K., Verstraete, W.: Pilot scale production of single cell proteins using the power-to-protein concept. The 2nd International Resource Recovery Conference, New York (2017)

    Google Scholar 

  162. KWR: Power-to-Protein: safe protein production from wastewater. https://www.kwrwater.nl/en/actueel/power-to-protein-safe-protein-production-from-wastewater/ (2020). Accessed 5 Nov 2020.

  163. Mets, L.: Methanothermobacter thermautotrophicus strain and variants thereof, European Patent Office, EP2661511A1, (2016)

  164. Hafenbradl, D.: Power-to-gas with biological methanation: an industrial application for energy storage and CO2 reuse worldwide. 6th International Conference on Renewable Energy Gas Technology, Malmö (2019)

    Google Scholar 

  165. Electrochaea GMBH: MAY 6, 2019 – Press release: ORBIT Power-To-Gas research plant goes into operation at the OTH Regensburg, http://www.electrochaea.com/latest-news/may-6-2019-press-release-orbit-power-to-gas-research-plant-goes-into-operation-at-the-oth-regensburg/. Accessed 4 Jan 2021

  166. European Environmental Agency: total greenhouse gas emission trends and projections in Europe.

  167. Ritchie, H; Roser, M.: CO2 and greenhouse gas emissions, 2017, revised 2020. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (2020). Accessed 17 Nov 2020.

  168. Jones, S.: Five ways to cycle carbon. Nat. Rev. Microbiol. 6, 95–95 (2008). https://doi.org/10.1038/nrmicro1847

    Article  Google Scholar 

  169. Burniol-Figols, A., Varrone, C., Le, S.B., Daugaard, A.E., Skiadas, I.V., Gavala, H.N.: Combined polyhydroxyalkanoates (PHA) and 1,3-propanediol production from crude glycerol: selective conversion of volatile fatty acids into PHA by mixed microbial consortia. Water Res. 136, 180–191 (2018). https://doi.org/10.1016/j.watres.2018.02.029

    Article  Google Scholar 

  170. Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H.N., Reis, M.A.M.: Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4, 55 (2017). https://doi.org/10.3390/bioengineering4020055

    Article  Google Scholar 

  171. Kruger, J.S., Cleveland, N.S., Yeap, R.Y., Dong, T., Ramirez, K.J., Nagle, N.J., Lowell, A.C., Beckham, G.T., McMillan, J.D., Biddy, M.J.: Recovery of fuel-precursor lipids from oleaginous yeast. ACS Sustain. Chem. Eng. 6, 2921–2931 (2018). https://doi.org/10.1021/acssuschemeng.7b01874

    Article  Google Scholar 

  172. Strübing, D., Huber, B., Lebuhn, M., Drewes, J.E., Koch, K.: High performance biological methanation in a thermophilic anaerobic trickle bed reactor. Bioresour. Technol. 245, 1176–1183 (2017). https://doi.org/10.1016/j.biortech.2017.08.088

    Article  Google Scholar 

  173. Burkhardt, M., Busch, G.: Methanation of hydrogen and carbon dioxide. Appl. Energy. 111, 74–79 (2013). https://doi.org/10.1016/j.apenergy.2013.04.080

    Article  Google Scholar 

  174. Burkhardt, M., Koschack, T., Busch, G.: Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system. Bioresour. Technol. 178, 330–333 (2015). https://doi.org/10.1016/j.biortech.2014.08.023

    Article  Google Scholar 

  175. Rachbauer, L., Voitl, G., Bochmann, G., Fuchs, W.: Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor. Appl. Energy 180, 483–490 (2016). https://doi.org/10.1016/j.apenergy.2016.07.109

    Article  Google Scholar 

  176. Lemmer, A., Ullrich, T.: Effect of different operating temperatures on the biological hydrogen methanation in trickle bed reactors. Energies 11, 1344 (2018). https://doi.org/10.3390/en11061344

    Article  Google Scholar 

  177. Burkhardt, M., Jordan, I., Heinrich, S., Behrens, J., Ziesche, A., Busch, G.: Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor. Appl. Energy 240, 818–826 (2019). https://doi.org/10.1016/j.apenergy.2019.02.076

    Article  Google Scholar 

  178. Dupnock, T.L., Deshusses, M.A.: Detailed investigations of dissolved hydrogen and hydrogen mass transfer in a biotrickling filter for upgrading biogas. Bioresour. Technol. 290, 121780 (2019). https://doi.org/10.1016/j.biortech.2019.121780

    Article  Google Scholar 

  179. Sieborg, M.U., Jønson, B.D., Ashraf, M.T., Yde, L., Triolo, J.M.: Biomethanation in a thermophilic biotrickling filter using cattle manure as nutrient media. Bioresour. Technol. Rep. 9, 100391 (2020). https://doi.org/10.1016/j.biteb.2020.100391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

We hereby declare that all authors whose names appear on the submission: Made substantial contribution to the present work; specifically HNG conceived the idea and structure for the article as well as the way forward and conclusions, all authors, HNG, AGA, KA and IVS performed literature search, drafted sections of the review and critically revised the work. Approved the version to be published. Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Hariklia N. Gavala.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavala, H.N., Grimalt-Alemany, A., Asimakopoulos, K. et al. Gas Biological Conversions: The Potential of Syngas and Carbon Dioxide as Production Platforms. Waste Biomass Valor 12, 5303–5328 (2021). https://doi.org/10.1007/s12649-020-01332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01332-7

Keywords

Navigation