Skip to main content

Advertisement

Log in

Impact of climate change on groundwater recharge in a Brazilian Savannah watershed

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

There is little information about the availability of water in the Cerrado biome, the main agricultural frontier in Brazil, especially about groundwater, and this has compromised the region’s economic and social development, as well as environmental sustainability. The reduction of rainfall in this region, indicated by numerous climate models, may reduce aquifer recharge and, consequently, groundwater availability and sustainable development of the Cerrado biome. This study aimed to evaluate the impact of global climate change on groundwater recharge in a Brazilian Savannah watershed. Rainfall and water table depth data were recorded between 2007 and 2015. Based on these data, equations were developed relating the average monthly depth of the water table with the accumulated average monthly rainfall. From these equations, monthly average recharges considering the future climate estimates made by climate models (Eta-HadGEM2-ES and Eta-MIROC5) and Representative Concentration Pathway (RCP) scenarios (4.5 and 8.5) were calculated. In a pessimistic scenario (RCP 8.5), the average monthly groundwater recharge is decreasing in the beginning and in the end of the rainy season, indicating that there may be an increase in the dry season and, consequently, a reduction in water availability in the Cerrado biome region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Albuquerque CG, Montenegro SMGL, Montenegro AA de A, Fontes Júnior RV de P (2015) Recarga de aquífero aluvial sob uso agrícola. Águas Subterr 29:60–71. https://doi.org/10.14295/ras.v29i1.27931

  • Althoff D, Rodrigues LN, da Silva DD (2020) Impacts of climate change on the evaporation and availability of water in small reservoirs in the Brazilian savannah. Clim Chang 159:215–232. https://doi.org/10.1007/s10584-020-02656-y

    Article  Google Scholar 

  • Asoka A, Gleeson T, Wada Y, Mishra V (2017) Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat Geosci 10:109–117. https://doi.org/10.1038/ngeo2869

    Article  Google Scholar 

  • Awotwi A, Kumi M, Jansson PE et al (2015) Predicting hydrological response to climate change in the White Volta Catchment, West Africa. J Earth Sci Clim Chang 6:1–7. https://doi.org/10.4172/2157-7617.1000249

    Article  Google Scholar 

  • Batalha MS, Barbosa MC, Faybishenko B, van Genuchten MT (2018) Effect of temporal averaging of meteorological data on predictions of groundwater recharge. J Hydrol Hydromech 66:143–152. https://doi.org/10.1515/johh-2017-0051

    Article  Google Scholar 

  • BJØRNÆS C, (2013) A guide to representative concentration pathways. Center for International Climate and Environmental Research - CICERO, Oslo

    Google Scholar 

  • Black TL (1994) The new NMC Mesoscale Eta model: description and forecast examples. Weather Forecast 9:265–278

    Article  Google Scholar 

  • Cambraia Neto AJ, Rodrigues LN (2020) Evaluation of groundwater recharge estimation methods in a watershed in the Brazilian Savannah. Environ Earth Sci 79:1–14. https://doi.org/10.1007/s12665-020-8884-x

    Article  Google Scholar 

  • Campos JEG, Monteiro CF, Rodrigues LN (2006) Geologia e zoneamento hidrogeológico da bacia do rio Preto. DF/GO/MG, Embrapa Cerrados-Documentos (INFOTECA-E), Planaltina

    Google Scholar 

  • Castro KB, Martins ES, Reatto A et al (2009) Compartimentação geomorfológica da bacia hidrográfica do rio Buriti Vermelho, Distrito Federal, DF – Boletim de Pesquisa e Desenvolvimento 244. Embrapa Cerrados, Planaltina - DF

  • Chou SC, Lyra A, Mourão C, Dereczynski C, Pilotto I, Gomes J, Bustamante J, Tavares P, Silva A, Rodrigues D, Campos D, Chagas D, Sueiro G, Siqueira G, Marengo J (2014a) Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. Am J Clim Chang 3:512–527. https://doi.org/10.4236/ajcc.2014.35043

    Article  Google Scholar 

  • Chou SC, Lyra A, Mourão C, Dereczynski C, Pilotto I, Gomes J, Bustamante J, Tavares P, Silva A, Rodrigues D, Campos D, Chagas D, Sueiro G, Siqueira G, Nobre P, Marengo J (2014b) Evaluation of the Eta simulations nested in three global climate models. Am J Clim Chang 3:438–454. https://doi.org/10.4236/ajcc.2014.35039

    Article  Google Scholar 

  • Crosbie RS, McCallum JL, Walker GR, Chiew FHS (2010) Modelling climate-change impacts on groundwater recharge in the Murray-Darling Basin, Australia. Hydrogeol J 18:1639–1656. https://doi.org/10.1007/s10040-010-0625-x

    Article  Google Scholar 

  • Cullis J, Strzepek K, Tadross M, Sami K, Havenga B, Gildenhuys B, Smith J (2011) Incorporating climate change into water resources planning for the town of Polokwane, South Africa. Clim Chang 108:437–456. https://doi.org/10.1007/s10584-010-9891-9

    Article  Google Scholar 

  • Cuthbert MO, Acworth RI, Andersen MS et al (2016) Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations M. Water Resour Assoc 52:827–840. https://doi.org/10.1111/j.1752-1688.1969.tb04897.x

    Article  Google Scholar 

  • da Silva AL, de Souza C, Eloy L, Passos CJS (2019) Políticas ambientais seletivas e expansão da fronteira agrícola no Cerrado : impactos sobre as comunidades locais numa Unidade de Conservação no oeste da Bahia. Rev NERA 22:321–347

    Google Scholar 

  • Dar MUD, Aggarwal R, Kaur S (2019) Climate predictions for Ludhiana District of Indian Punjab under RCP 4.5 and RCP 8.5. Int J Environ Clim Chang 9:128–141. https://doi.org/10.9734/ijecc/2019/v9i230102

    Article  Google Scholar 

  • de Jesus TCL, Senna MCA, Cataldi M et al (2017) Impacto do aumento da concentração atmosférica de CO2 no balanço hídrico climatológico do cerrado. Rev Bras Climatol 21:313–326. https://doi.org/10.5380/abclima.v21i0.46432

    Article  Google Scholar 

  • Eastoe C, Towne D (2018) Regional zonation of groundwater recharge mechanisms in alluvial basins of Arizona: interpretation of isotope mapping. J Geochem Explor 194:134–145. https://doi.org/10.1016/j.gexplo.2018.07.013

  • Ferreira FLV, Coelho F de CV, Sousa I de P, et al (2020) Environmental diagnosis of water source in a Brazilian Cerrado watershed. Cad Cien Agra 12:1–11. https://doi.org/10.35699/2447-6218.2020.20739

  • Gaspar MTP, Campos JEG, de Moura Cadamuro AL (2007) Condições de infiltração em solos na região de recarga do sistema aqüífero Urucuia no oeste da Bahia sob diferentes condições de usos. Rev Bras Geosci 37:542–550. https://doi.org/10.25249/0375-7536.2007373542550

    Article  Google Scholar 

  • Gonçalves RD, Chang HK (2017) Modelo hidrogeológico do Sistema Aquífero Urucuia na bacia do Rio Grande (BA). Geociências 36:205–220

    Article  Google Scholar 

  • Graham LP (2004) Climate change effects on river flow to the Baltic Sea. Ambio 33:235–241. https://doi.org/10.1579/0044-7447-33.4.235

    Article  Google Scholar 

  • Havril T, Tóth Á, Molson JW, Galsa A, Mádl-Szőnyi J (2018) Impacts of predicted climate change on groundwater flow systems: can wetlands disappear due to recharge reduction? J Hydrol 563:1169–1180. https://doi.org/10.1016/j.jhydrol.2017.09.020

    Article  Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109. https://doi.org/10.1007/s10040-001-0178-0

    Article  Google Scholar 

  • Hirata R, Conicelli BP (2012) Groundwater resources in Brazil: a review of possible impacts caused by climate change. An Acad Bras Cienc 84:297–312. https://doi.org/10.1590/S0001-37652012005000037

    Article  Google Scholar 

  • Hirata R, Zoby JLG, Oliveira FR (2017) Ground water: strategic or emergency reserve. In: Bicudo CE, Tundisi JG, Scheuenstuhl MCB (eds) Waters of Brazil: Strategic analysis, 1a. Springer International Publishing, Cham, pp 119–136

    Chapter  Google Scholar 

  • Hugman R, Stigter T, Costa L, Monteiro JP (2017) Numerical modelling assessment of climate-change impacts and mitigation measures on the Querença-Silves coastal aquifer (Algarve, Portugal). Hydrogeol J 25:2105–2121. https://doi.org/10.1007/s10040-017-1594-0

    Article  Google Scholar 

  • Iglesias A, Garrote L (2015) Adaptation strategies for agricultural water management under climate change in Europe. Agric Water Manag 155:113–124. https://doi.org/10.1016/j.agwat.2015.03.014

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2011) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge-United Kingdom and New York, NY, USA

  • Jeong J, Park E, Shik Han W, Kim KY, Suk H, Beom Jo S (2018) A generalized groundwater fluctuation model based on precipitation for estimating water table levels of deep unconfined aquifers. J Hydrol 562:749–757. https://doi.org/10.1016/j.jhydrol.2018.05.055

    Article  Google Scholar 

  • Kahsay KD, Pingale SM, Hatiye SD (2018) Impact of climate change on groundwater recharge and base flow in the sub-catchment of Tekeze basin, Ethiopia. Groundw Sustain Dev 6:121–133. https://doi.org/10.1016/j.gsd.2017.12.002

    Article  Google Scholar 

  • Kambhammettu BVNP, King JP, Schmid W (2014) Grid-size dependency of evapotranspiration simulations in shallow aquifers: an optimal approach. J Hydrol Eng 19:4014018. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000957

    Article  Google Scholar 

  • Kimball BF (1960) On the choice of plotting positions on probability paper. J Am Stat Assoc 55:546–560

    Article  Google Scholar 

  • Klink CA (2014) Policy intervention in the Cerrado Savannas of Brazil changes in land use and effects on conservation. In: Consorte-McCrea AG, Santos EF (eds) Ecology and Conservation of the Maned Wolf: Multidisciplinary Perspectives. CRC Press, Boca Raton, pp 293–308

    Google Scholar 

  • Kroes J, van Dam J, Supit I, de Abelleyra D, Verón S, de Wit A, Boogaard H, Angelini M, Damiano F, Groenendijk P, Wesseling J, Veldhuizen A (2019) Agrohydrological analysis of groundwater recharge and land use changes in the Pampas of Argentina. Agric Water Manag 213:843–857. https://doi.org/10.1016/j.agwat.2018.12.008

    Article  Google Scholar 

  • Krol MS, De Vries MJ, Van Oel PR, Araújo JC (2011) Sustainability of small reservoirs and large scale water availability under current conditions and climate change. Water Resour Manag 25:3017–3026. https://doi.org/10.1007/s11269-011-9787-0

    Article  Google Scholar 

  • Lauffenburger ZH, Gurdak JJ, Hobza C, Woodward D, Wolf C (2018) Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA. Agric Water Manag 204:69–80. https://doi.org/10.1016/j.agwat.2018.03.022

    Article  Google Scholar 

  • Leta OT, El-Kadi AI, Dulai H (2018) Impact of climate change on daily streamflow and its extreme values in Pacific Island watersheds. Sustainability 10. https://doi.org/10.3390/su10062057

  • Maneta MP, Torres M, Wallender WW, Vosti S, Kirby M, Bassoi LH, Rodrigues LN (2009) Water demand and flows in the São Francisco River Basin (Brazil) with increased irrigation. Agric Water Manag 96:1191–1200. https://doi.org/10.1016/j.agwat.2009.03.008

    Article  Google Scholar 

  • Medellín-Azuara J, Harou JJ, Olivares MA, Madani K, Lund JR, Howitt RE, Tanaka SK, Jenkins MW, Zhu T (2008) Adaptability and adaptations of California’s water supply system to dry climate warming. Clim Chang 87:S75–S90. https://doi.org/10.1007/s10584-007-9355-z

    Article  Google Scholar 

  • Mello CR, Gomes NM, Silva AM, Junqueira Junior JA (2007) Modelagem de atributos físico-hídricos do solo numa bacia hidrográfica da região do Alto Rio Grande, MG. Rev Bras Cienc Solo 31:845–852

    Article  Google Scholar 

  • Mesinger F (1984) A blocking technique for representation of mountains in atmospheric models. Riv Meteorol Aeronaut 44:195–202

    Google Scholar 

  • Mesinger F, Chou SC, Gomes JL, Jovic D, Bastos P, Bustamante JF, Lazic L, Lyra AA, Morelli S, Ristic I, Veljovic K (2012) An upgraded version of the Eta model. Meteorog Atmos Phys 116:63–79. https://doi.org/10.1007/s00703-012-0182-z

    Article  Google Scholar 

  • Ministério do Meio Ambiente (MMA) (2013) Programa nacional de conservação e uso sustentável do bioma cerrado - Programa cerrado sustentável. Ministério do Meio Ambiente, Brasília

    Google Scholar 

  • Moré JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory. In: Watson GA (ed) Numerical analysis: proceedings of the Biennial Conference held at Dundee, June 28-July 1, 1977. Springer, Berlin, pp 105–116

  • Moreira JMMAP, Sousa TCR, Souza MA, et al (2010) Caracterização dos produtores do Núcleo Rural do Buriti Vermelho: aspectos sociais, geográficos e de uso do solo e da água. Embrapa Cerrados - Boletim de Pesquisa e Desenvolvimento (INFOTECA-E), Planaltina

  • Moriasi DN, Arnold JG, Van Liew MW et al (2007) Curriculum for the Academy Profession Degree Programme in Multimedia Design and Communication - National part, 2017. Trans ASABE 50:885–900. https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I — A discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Obergfell C, Bakker M, Maas K (2019) Estimation of average diffuse aquifer recharge using time series modeling of groundwater heads. Water Resour Res 55:2194–2210. https://doi.org/10.1029/2018WR024235

    Article  Google Scholar 

  • Oliveira RS, Bezerra L, Davidson EA et al (2005) Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct Ecol 19:574–581. https://doi.org/10.1111/j.1365-2435.2005.01003.x

    Article  Google Scholar 

  • Oliveira VA, Mello CR, Beskow S et al (2019) Modeling the effects of climate change on hydrology and sediment load in a headwater basin in the Brazilian Cerrado biome. Ecol Eng 133:20–31. https://doi.org/10.1016/j.ecoleng.2019.04.021

    Article  Google Scholar 

  • Owuor SO, Butterbach-Bahl K, Guzha AC, Rufino MC, Pelster DE, Díaz-Pinés E, Breuer L (2016) Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol Process 5:1–21. https://doi.org/10.1186/s13717-016-0060-6

    Article  Google Scholar 

  • Pires GF, Abrahão GM, Brumatti LM, Oliveira LJC, Costa MH, Liddicoat S, Kato E, Ladle RJ (2016) Increased climate risk in Brazilian double cropping agriculture systems: Implications for land use in Northern Brazil. Agric For Meteorol 228–229:286–298. https://doi.org/10.1016/j.agrformet.2016.07.005

    Article  Google Scholar 

  • Reshmidevi TV, Nagesh Kumar D, Mehrotra R, Sharma A (2018) Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs. J Hydrol 556:1192–1204. https://doi.org/10.1016/j.jhydrol.2017.02.016

    Article  Google Scholar 

  • Ribeiro JPM, Velásques LNM, Carvalho Filho CA (2017) Recarga e conexão hidráulica no sistema aquífero granular-fissural no Campus Pampulha da UFMG, Belo Horizonte, MG. Rev Inst Geol 38:17–30. https://doi.org/10.5935/0100-929X.20170002

  • Rodrigues LN (2016) Bacia Experimental do Rio Buriti Vermelho, na ecorregião do Planalto Central. In: Rodrigues LN, Schuler AE (eds) Água: Desafios para a sustentabilidade da agricultura, 1a. Embrapa, Brasília, pp 233–255

    Google Scholar 

  • Rodrigues LN, Liebe J (2013) Small reservoirs depth-area-volume relationships in Savannah Regions of Brazil and Ghana. Water Resour Irrig Manag 2:1–10

    Google Scholar 

  • Rodrigues LN, Sano EE, Azevedo JA de, Silva EM da (2007) Distribuição espacial e área máxima do espelho d’água de pequenas barragens de terra na bacia do Rio Preto. Rev Esp Geogr 10:379–400 

  • Rodrigues JAM, Viola MR, Alvarenga LA, Mello CR, Chou SC, Oliveira VA, Uddameri V, Morais MAV (2020) Climate change impacts under representative concentration pathway scenarios on streamflow and droughts of basins in the Brazilian Cerrado biome. Int J Climatol 40:2511–2526. https://doi.org/10.1002/joc.6347

    Article  Google Scholar 

  • Sadaf R, Mahar GA, Younes I (2018) Appraisal of ground water potential through remote sensing in River Basin , Pakistan. Int J Econ Environ Geol 9:25–32

    Google Scholar 

  • Searcy JK (1959) Flow-duration curves (No. 1542). US Government Printing Office, Washington

  • Shao Q, Wong H, Xia J, Ip WC (2004) Models for extremes using the extended three-parameter Burr XII system with application to flood frequency analysis. Hydrol Sci J 49:685–701. https://doi.org/10.1623/hysj.49.4.685.54425

    Article  Google Scholar 

  • Shao Q, Zhang L, Chen YD, Singh VP (2009) A new method for modelling flow duration curves and predicting streamflow regimes under altered land-use conditions. Hydrol Sci J 54:606–622. https://doi.org/10.1623/hysj.54.3.606

    Article  Google Scholar 

  • Silva AJ, Monteiro MSL, Silva M V. (2015) Contrapontos da consolidação do agronegócio no cerrado brasileiro. Soc e Territ 27:95–114 

    Google Scholar 

  • Silva COF, Manzione RL, Albuquerque Filho JL (2019) Combining remotely sensed actual evapotranspiration and GIS analysis for groundwater level modeling. Environ Earth Sci 78. https://doi.org/10.1007/s12665-019-8467-x

  • Sishodia RP, Shukla S, Wani SP, Graham WD, Jones JW (2018) Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India. Sci Total Environ 635:725–740. https://doi.org/10.1016/j.scitotenv.2018.04.130

    Article  Google Scholar 

  • Sophocleous M (1992) Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics. J Hydrol 137:113–140. https://doi.org/10.1016/0022-1694(92)90051-V

    Article  Google Scholar 

  • Soro G, Yao A, Kouame Y, Bi T (2017) Climate change and its impacts on water resources in the Bandama Basin, Côte D’ivoire. Hydrology 4:18. https://doi.org/10.3390/hydrology4010018

    Article  Google Scholar 

  • Souza E, Pontes LM, Fernandes Filho EI et al (2019) Spatial and temporal potential groundwater recharge: the case of the Doce River Basin, Brazil. Rev Bras Ciênc Solo 43. https://doi.org/10.1590/18069657rbcs20180010

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: An overview. Clim Chang 109:5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Wahnfried I, Hirata R (2005) Comparação de métodos de estimativa de recarga de aqüíferos em uma planície aluvionar na Bacia Hidrográfica do Alto Tietê (São Paulo). Rev Bras Recur Hídr 10:15–25. https://doi.org/10.21168/rbrh.v10n2.p15-25

    Article  Google Scholar 

  • Wendland E, Gomes LH, Troeger U (2015) Recharge contribution to the Guarani aquifer system estimated from the water balance method in a representative watershed. An Acad Bras Cienc 87:595–609. https://doi.org/10.1590/0001-3765201520140062

    Article  Google Scholar 

  • Wendt DE, Rodrigues LN, Dijksma R, Dam JCV (2015) Assessing groundwater potencial use for expanding irrigation in the Buriti Vermelho watershed. Irriga 1:81–94

    Article  Google Scholar 

  • Yawson DO, Adu MO, Mulholland B, Ball T, Frimpong KA, Mohan S, White PJ (2019) Regional variations in potential groundwater recharge from spring barley crop fields in the UK under projected climate change. Groundw Sustain Dev 8:332–345. https://doi.org/10.1016/j.gsd.2018.12.005

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the data providers: the Brazilian Agricultural Research Corporation (EMBRAPA Cerrados) for providing the climatic data, water table depth, and soil parameters collected on Buriti Vermelho watershed; the National Institute of Meteorology (INMET) for providing the climatic data collected on Brasília DF weather station (code 83377); and the Brazilian National Institute for Space Research (INPE) for providing the daily data of high-resolution climate projections.

Funding

This study was supported by the Brazilian Agricultural Research Corporation (EMBRAPA Cerrados), the Federal University of Viçosa (UFV), and the Brazilian National Institute for Space Research (INPE) and funded in part by the Federal District Research Support Foundation (FAP-DF) and the Coordination for the Improvement of Higher Education Personnel (CAPES—Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: Arnaldo José Cambraia Neto and Lineu Neiva Rodrigues. Material preparation, data collection, and analysis: Arnaldo José Cambraia Neto and Daniel Althoff. Writing—original draft preparation: Arnaldo José Cambraia Neto. Writing—review and editing: Arnaldo José Cambraia Neto, Lineu Neiva Rodrigues, Demetrius David da Silva and Daniel Althoff.

Corresponding author

Correspondence to Arnaldo José Cambraia Neto.

Ethics declarations

Conflict of interest

The authors have no conflict of interest on publishing this research.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cambraia Neto, A.J., Rodrigues, L.N., da Silva, D.D. et al. Impact of climate change on groundwater recharge in a Brazilian Savannah watershed. Theor Appl Climatol 143, 1425–1436 (2021). https://doi.org/10.1007/s00704-020-03477-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03477-w

Navigation