Skip to main content

Advertisement

Log in

Eco-friendly Geopolymer Composite Based on Non-heat-treated Phosphate Sludge Reinforced With Polypropylene Fibers

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Geopolymers produced with metakaolin (MK) and thermally untreated phosphate sludge (PS) are beneficial and environmentally advantageous materials, but their fragility limits its applications. The present research aims to evaluate the influence of polypropylene fibers PPF inclusion in MK/PS based geopolymers in view of overcoming the brittleness of these materials. The geopolymer matrix was prepared by mixing the thermally untreated phosphate sludge with the metakaolin in a proportion of 50% by weight, then short polypropylene fibers (PPFs) as reinforcement material were incorporated in amounts of 0.25, 0.50, 1, and 1.5%. Composite performances were assessed in the fresh state through flow measurement, and in the hardened state through the properties of the composites under bending and compressive loading conditions. In addition, the fiber/matrix interfacial contact area was examined using scanning electron microscopy (SEM). The outcomes demonstrate that the PPF incorporation of up to 1.5% by weight into MK/PS based geopolymer paste significantly improves the flexural strength with an increase of 41% (6.41 and 9.62 MPa), as well as leads to a slight decrease of compressive strength and density. The findings of the current research reveals also that MK/PS based geopolymers can achieve a high ductility with an adequate reinforcement.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Davidovits J (1991) Geopolymers: Inorganic polymeric new materials. J Therm Anal 37:1633–1656. https://doi.org/10.1007/BF01912193

    Article  CAS  Google Scholar 

  2. Al-mashhadani MM, Canpolat O, Aygörmez Y et al (2018) Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Constr Build Mater 167:505–513. https://doi.org/10.1016/j.conbuildmat.2018.02.061

    Article  CAS  Google Scholar 

  3. Bhutta A, Borges PHR, Zanotti C et al (2017) Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. Cem Concr Compos 80:31–40. https://doi.org/10.1016/j.cemconcomp.2016.11.014

    Article  CAS  Google Scholar 

  4. Haddaji Y, Majdoubi H, Mansouri S et al (2020) Effect of sodium hexafluorosilicate addition on the properties of metakaolin based geopolymers cured at ambient temperature. Silicon. https://doi.org/10.1007/s12633-020-00536-9

    Article  Google Scholar 

  5. Sathanandam T, Awoyera PO, Vijayan V, Sathishkumar K (2017) Low carbon building: Experimental insight on the use of fly ash and glass fibre for making geopolymer concrete. Sustain Environ Res 27:146–153. https://doi.org/10.1016/j.serj.2017.03.005

    Article  CAS  Google Scholar 

  6. Farooq M, Bhutta A, Borges PHR et al (2018) Flexural behavior and single fiber-matrix bond-slip behavior of macro fiber reinforced fly ash-based geopolymers. In: Hordijk DA, Luković M et al (eds) High tech concrete: where technology and engineering meet. Springer International Publishing, Cham, pp 2338–2346

    Chapter  Google Scholar 

  7. Alomayri T (2017) The microstructural and mechanical properties of geopolymer composites containing glass microfibres. Ceram Int 43:4576–4582. https://doi.org/10.1016/j.ceramint.2016.12.118

    Article  CAS  Google Scholar 

  8. Burduhos Nergis DD, Abdullah MMAB, Vizureanu P, Tahir MFM (2018) Geopolymers and their uses: review. IOP Conf Ser: Mater Sci Eng 374:012019. https://doi.org/10.1088/1757-899X/374/1/012019

    Article  Google Scholar 

  9. Samarakoon MH, Ranjith PG, Rathnaweera TD, Perera MSA (2019) Recent advances in alkaline cement binders: A review. J Clean Prod 227:70–87. https://doi.org/10.1016/j.jclepro.2019.04.103

    Article  CAS  Google Scholar 

  10. Paiva H, Yliniemi J, Illikainen M et al (2019) Mine tailings geopolymers as a waste management solution for a more sustainable habitat. Sustainability 11:995. https://doi.org/10.3390/su11040995

    Article  CAS  Google Scholar 

  11. Li C, Sun H, Li L (2010) A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res 40:1341–1349. https://doi.org/10.1016/j.cemconres.2010.03.020

    Article  CAS  Google Scholar 

  12. Loutou M, Taha Y, Benzaazoua M et al (2019) Valorization of clay by-product from moroccan phosphate mines for the production of fired bricks. J Clean Prod 229:169–179. https://doi.org/10.1016/j.jclepro.2019.05.003

    Article  CAS  Google Scholar 

  13. Hakkou R, Benzaazoua M, Bussière B (2016) Valorization of phosphate waste rocks and sludge from the moroccan phosphate mines: challenges and perspectives. Procedia Eng 138:110–118. https://doi.org/10.1016/j.proeng.2016.02.068

    Article  CAS  Google Scholar 

  14. Li Z, Nedeljković M, Chen B, Ye G (2019) Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin. Cem Concr Res 122:30–41. https://doi.org/10.1016/j.cemconres.2019.04.016

    Article  CAS  Google Scholar 

  15. Dabbebi R, Baklouti S, Barroso de Aguiar JL et al (2018) Investigations of geopolymeric mixtures based on phosphate washing waste. Science Technology of Materials 30:1–5. https://doi.org/10.1016/j.stmat.2018.08.001

    Article  Google Scholar 

  16. Šimonová H, Frantík P, Keršner Z et al (2019) Components of the Fracture Response of Alkali-Activated Slag Composites with Steel Microfibers. Applied Sciences 9:1754. https://doi.org/10.3390/app9091754

    Article  CAS  Google Scholar 

  17. Moukannaa S, Loutou M, Benzaazoua M et al (2018) Recycling of phosphate mine tailings for the production of geopolymers. J Clean Prod 185:891–903. https://doi.org/10.1016/j.jclepro.2018.03.094

    Article  CAS  Google Scholar 

  18. Ohno M, Li VC (2018) An integrated design method of Engineered Geopolymer Composite. Cem Concr Compos 88:73–85. https://doi.org/10.1016/j.cemconcomp.2018.02.001

    Article  CAS  Google Scholar 

  19. Baykara H, Cornejo MH, Espinoza A et al (2020) Preparation, characterization, and evaluation of compressive strength of polypropylene fiber reinforced geopolymer mortars. Heliyon 6:e03755. https://doi.org/10.1016/j.heliyon.2020.e03755

    Article  PubMed  PubMed Central  Google Scholar 

  20. Batista RP, Trindade ACC, Borges PHR, de Silva F (2019) Silica fume as precursor in the development of sustainable and high-performance mk-based alkali-activated materials reinforced with short PVA fibers. Front Mater 6:77. https://doi.org/10.3389/fmats.2019.00077

    Article  Google Scholar 

  21. Nguyen H, Kinnunen P, Carvelli V et al (2019) Strain hardening polypropylene fiber reinforced composite from hydrated ladle slag and gypsum. Compos Part B Eng 158:328–338. https://doi.org/10.1016/j.compositesb.2018.09.056

    Article  CAS  Google Scholar 

  22. Furtos G, Silaghi-Dumitrescu L, Pascuta P et al (2019) Mechanical properties of wood fiber reinforced geopolymer composites with sand addition. J Nat Fiber :1–12. https://doi.org/10.1080/15440478.2019.1621792

  23. Korni̇ Ejenko K, Łach M, Doğan Sağlamti̇ MN et al (2020) The overview of mechanical properties of short natural fiber reinforced geopolymer composites. Environ Res Technol 3:21–32. https://doi.org/10.35208/ert.671713

    Article  Google Scholar 

  24. Rashad AM (2019) The effect of polypropylene, polyvinyl-alcohol, carbon and glass fibres on geopolymers properties. Mater Sci Technol 35:127–146. https://doi.org/10.1080/02670836.2018.1514096

    Article  CAS  Google Scholar 

  25. Nematollahi B, Qiu J, Yang E-H, Sanjayan J (2017) Microscale investigation of fiber-matrix interface properties of strain-hardening geopolymer composite. Ceram Int 43:15616–15625. https://doi.org/10.1016/j.ceramint.2017.08.118

    Article  CAS  Google Scholar 

  26. Korniejenko K, Lin W-T, Šimonová H (2020) Mechanical properties of short polymer fiber-reinforced geopolymer composites. J Compos Sci 4:128. https://doi.org/10.3390/jcs4030128

    Article  CAS  Google Scholar 

  27. Sukontasukkul P, Pongsopha P, Chindaprasirt P, Songpiriyakij S (2018) Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Constr Build Mater 161:37–44. https://doi.org/10.1016/j.conbuildmat.2017.11.122

    Article  CAS  Google Scholar 

  28. Aygörmez Y, Canpolat O, Al-mashhadani MM, Uysal M (2020) Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Constr Build Mater 235:117502. https://doi.org/10.1016/j.conbuildmat.2019.117502

    Article  CAS  Google Scholar 

  29. Nematollahi B, Vijay P, Sanjayan J et al (2018) Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction. Materials 11:2352. https://doi.org/10.3390/ma11122352

    Article  CAS  PubMed Central  Google Scholar 

  30. Mohseni E (2018) Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites. Constr Build Mater 186:904–911. https://doi.org/10.1016/j.conbuildmat.2018.08.032

    Article  CAS  Google Scholar 

  31. Nguyen H, Carvelli V, Adesanya E et al (2018) High performance cementitious composite from alkali-activated ladle slag reinforced with polypropylene fibers. Cem Concr Compos 90:150–160. https://doi.org/10.1016/j.cemconcomp.2018.03.024

    Article  CAS  Google Scholar 

  32. Wang Y, Zheng T, Zheng X et al (2020) Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers. Constr Build Mater 251:118960. https://doi.org/10.1016/j.conbuildmat.2020.118960

    Article  CAS  Google Scholar 

  33. Xu Y, Chen H, Wang P (2020) Effect of polypropylene fiber on properties of alkali-activated slag mortar. Adv Civ Eng 2020:1–12. https://doi.org/10.1155/2020/4752841

    Article  Google Scholar 

  34. Hamdane H, Tamraoui Y, Mansouri S et al (2020) Effect of alkali-mixed content and thermally untreated phosphate sludge dosages on some properties of metakaolin based geopolymer material. Mater Chem Phys 248:122938. https://doi.org/10.1016/j.matchemphys.2020.122938

    Article  CAS  Google Scholar 

  35. Ranjbar N, Mehrali M, Behnia A et al (2016) A comprehensive study of the polypropylene fiber reinforced fly ash based geopolymer. PLoS One 11:e0147546. https://doi.org/10.1371/journal.pone.0147546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. ASTM C20-00 (2015) Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, ASTM International, West Conshohocken, PA, 2015. www.astm.org

  37. ASTM C39 / C39M-20 (2020) Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA. www.astm.org

  38. ASTM C1609 / C1609M-19a (2019) Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM International, West Conshohocken, PA. www.astm.org

  39. Frayyeh QJ, Swaif AM (2017) Mechanical properties of fly ash geopolymer mortar reinforced with polypropylene fibers. J Univ Babylon Eng Sci 26(1):173–182. Retrieved from https://www.journalofbabylon.com/index.php/JUBES/article/view/1190

  40. Selmani S, Sdiri A, Bouaziz S et al (2017) Effects of metakaolin addition on geopolymer prepared from natural kaolinitic clay. Appl Clay Sci 146:457–467. https://doi.org/10.1016/j.clay.2017.06.019

    Article  CAS  Google Scholar 

  41. Wei B, Zhang Y, Bao S (2017) Preparation of geopolymers from vanadium tailings by mechanical activation. Constr Build Mater 145:236–242. https://doi.org/10.1016/j.conbuildmat.2017.03.234

    Article  CAS  Google Scholar 

  42. Nikolov A, Rostovsky I, Nugteren H (2017) Geopolymer materials based on natural zeolite. Case Studies in Construction Materials 6:198–205. https://doi.org/10.1016/j.cscm.2017.03.001

    Article  Google Scholar 

  43. Marsh A, Heath A, Patureau P et al (2018) A mild conditions synthesis route to produce hydrosodalite from kaolinite, compatible with extrusion processing. Microporous Mesoporous Mater 264:125–132. https://doi.org/10.1016/j.micromeso.2018.01.014

    Article  CAS  Google Scholar 

  44. Ranjbar N, Talebian S, Mehrali M et al (2016) Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos Sci Technol 122:73–81. https://doi.org/10.1016/j.compscitech.2015.11.009

    Article  CAS  Google Scholar 

  45. Felekoğlu B, Tosun K, Baradan B (2009) Effects of fibre type and matrix structure on the mechanical performance of self-compacting micro-concrete composites. Cem Concr Res 39:1023–1032. https://doi.org/10.1016/j.cemconres.2009.07.007

    Article  CAS  Google Scholar 

  46. Yan B, Duan P, Ren D (2017) Mechanical strength, surface abrasion resistance and microstructure of fly ash-metakaolin-sepiolite geopolymer composites. Ceram Int 43:1052–1060. https://doi.org/10.1016/j.ceramint.2016.10.039

    Article  CAS  Google Scholar 

  47. Puertas F, Amat T, Fernández-Jiménez A, Vázquez T (2003) Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem Concr Res 33:2031–2036. https://doi.org/10.1016/S0008-8846(03)00222-9

    Article  CAS  Google Scholar 

  48. López-Buendía AM, Romero-Sánchez MD, Climent V, Guillem C (2013) Surface treated polypropylene (PP) fibres for reinforced concrete. Cem Concr Res 54:29–35. https://doi.org/10.1016/j.cemconres.2013.08.004

    Article  CAS  Google Scholar 

  49. Li B, Chi Y, Xu L et al (2018) Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete. Constr Build Mater 191:80–94. https://doi.org/10.1016/j.conbuildmat.2018.09.202

    Article  CAS  Google Scholar 

  50. Nam J, Kim G, Lee B et al (2016) Frost resistance of polyvinyl alcohol fiber and polypropylene fiber reinforced cementitious composites under freeze thaw cycling. Compos Part B Eng 90:241–250. https://doi.org/10.1016/j.compositesb.2015.12.009

    Article  CAS  Google Scholar 

  51. Bhutta A, Farooq M, Zanotti C, Banthia N (2017) Pull-out behavior of different fibers in geopolymer mortars: effects of alkaline solution concentration and curing. Mater Struct 50:80. https://doi.org/10.1617/s11527-016-0889-2

    Article  CAS  Google Scholar 

  52. Murat Maras M, Metin Kose M (2019) Mechanical and microstructural properties of polypropylene fiber-reinforced geopolymer composites. JFST 75:35–46. https://doi.org/10.2115/fiberst.2019-0006

    Article  Google Scholar 

  53. Zhang Z, Yao X, Zhu H et al (2009) Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. J Cent S Univ Technol 16:49–52. https://doi.org/10.1007/s11771-009-0008-4

    Article  CAS  Google Scholar 

  54. Shaikh FUA, Fairchild A, Zammar R (2018) Comparative strain and deflection hardening behaviour of polyethylene fibre reinforced ambient air and heat cured geopolymer composites. Constr Build Mater 163:890–900. https://doi.org/10.1016/j.conbuildmat.2017.12.175

    Article  CAS  Google Scholar 

  55. Mobasher B, Dey V, Bauchmoyer J et al (2019) Reinforcing effeciency of micro and macro continuous polypropylene fibers in cementitious composites. Appl Sci 9(11):2189. https://doi.org/10.3390/app9112189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Technical Centre for Plastics and Rubber (CTPC) and Mohammed VI Polytechnic University (UM6P) for their support. We would like to thank the Directors of these two organizations.

Author information

Authors and Affiliations

Authors

Contributions

Younesse Haddaji: Conceptualization, Methodology, Formal analysis, Writing - original draft. Hasna Hamdane: Resources, Writing - review & editing. Hicham Majdoubi: Investigation, Software, Resources. Said Mansouri: Visualization, Writing - review & editing. Driss Allaoui: Resources, Data curation, review & editing. Mehdi El bouchti: Methodology, Formal analysis, writing. Youssef Tamraoui: Methodology, Formal analysis, Writing - review & editing. Bouchaib Manoun: Validation, Writing - review & editing. Mina Oumam: Conceptualization, Writing - review & editing. Hassan Hannache: Supervision, Project administration, Writing - review & editing.

Corresponding author

Correspondence to Younesse Haddaji.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

Not applicated.

Consent for Publication

All authors (including CA) agreed to this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddaji, Y., Hamdane, H., Majdoubi, H. et al. Eco-friendly Geopolymer Composite Based on Non-heat-treated Phosphate Sludge Reinforced With Polypropylene Fibers. Silicon 13, 2389–2400 (2021). https://doi.org/10.1007/s12633-020-00873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00873-9

Keywords

Navigation