Skip to main content
Log in

Spectroscopic Study of Eu3+-Doped Magnesium Lanthanum Phosphate (MLPO) Films on SiO2 Substrate

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The distinctive optical band gap and photoluminescence of sol-gel Eu3+-doped magnesium lanthanum phosphate thin films on quartz (SiO2) substrate were successfully investigated. Effects of Eu3+ on the various spectroscopic parameters, including FTIR, transmittance, absorption coefficient, optical energy gap, refractive index, dielectric constant, and luminescence were explored. FT-IR measurements are achieved for the undoped and Eu3+-doped films which reinforce the excess oxygens from the MgO, La2O3, and Eu2O3 oxide supports the formation of MLPO and Eu-doped MLPO groups in the tetrahedral phosphate network. The transmittances, reflectance, refractive index, and dielectric constant show a decreasing behavior with increasing the Eu content in the MLP matrix while the absorption coefficient and energy gap show an increase. The emission spectra of Eu-doped MgO:La2O3:P2O5 shows the characteristic electronic transitions of Eu3+ ions in phosphorous-based films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not available.

References

  1. Arcos D, Vallet-Regí M (2010) Sol-Gel Silica-Based Biomaterials and Bone Tissue Regeneration. Acta Biomater 6:2874–2888

    Article  CAS  Google Scholar 

  2. Nampi PP, Kartha CC, Jose G, P.R. AK, Anilkumar T, Varma H (2013) Sol-Gel Nanoporous Silica as Substrate for immobilization of Conjugated Biomolecules for Application as Fluorescence Resonance Energy Transfer (FRET) Based Biosensor. Sensors Actuators B Chem 185:252–257. https://doi.org/10.1016/j.snb.2013.04.067

    Article  CAS  Google Scholar 

  3. Kaur P, Singh D, Singh T (2018) Gamma rays Shielding and Sensing Application of Some Rare Earth Doped Lead-Alumino-Phosphate Glasses. Radiat Phys Chem 144:336–343. https://doi.org/10.1016/j.radphyschem.2017.09.018

    Article  CAS  Google Scholar 

  4. Enrichi F, Armellini C, Belmokhtar S, Bouajaj A, Chiappini A, Ferrari M, Quandt A, Righini GC, Vomiero A, Zur L (2018) Visible to NIR Downconversion Process in Tb3+-Yb3+ Codoped Silica-Hafnia Glass and Glass-Ceramic Sol-Gel Waveguides for Solar Cells. J Lumin 193:44–50. https://doi.org/10.1016/j.jlumin.2017.08.027

    Article  CAS  Google Scholar 

  5. Tan CZ, Arndt J (2001) Refractive Index, Optical Dispersion, and Group Velocity of Infrared Waves in Silica Glass. J Phys Chem Solids 62:1087–1092. https://doi.org/10.1016/S0022-3697(00)00285-7

    Article  CAS  Google Scholar 

  6. Dahshan A, Hammad ABA, Aly KA, El Nahrawy AM (2020) Eu2O3 Role in the Optical and Photoluminescence Properties of 50SiO2-7MgO-20ZnO-(23-x)La2O3-xEu2O3 Nano-Crystalline Thin Films. Appl Phys A Mater Sci Process 126:19. https://doi.org/10.1007/s00339-019-3207-3

    Article  CAS  Google Scholar 

  7. ElNahrawy AM, AbouHammad AB (2016) A Facile Co-Gelation Sol Gel Route to Synthesize Cao: P2o5: Sio2 Xerogel Embedded in Chitosan Nanocomposite For Bioapplications. Int J of PharmTech Research 9:16–21

  8. Ollier N, Charpentier T, Boizot B, Wallez G, Ghaleb D (2004) A Raman and MAS NMR Study of Mixed Alkali Na-K and Na-Li Aluminoborosilicate Glasses. J Non-Cryst Solids 341:26–34. https://doi.org/10.1016/j.jnoncrysol.2004.05.010

    Article  CAS  Google Scholar 

  9. Saini A, Khanna A, Michaelis VK, Kroeker S, González F, Hernández D (2009) Structure-Property Correlations in Lead Borate and Borosilicate Glasses Doped with Aluminum Oxide. J Non-Cryst Solids 355:2323–2332. https://doi.org/10.1016/j.jnoncrysol.2009.08.006

    Article  CAS  Google Scholar 

  10. Shams E, Babaei A, Taheri AR, Kooshki M (2009) Voltammetric Determination of Dopamine at a Zirconium Phosphated Silica gel Modified Carbon Paste Electrode. Bioelectrochemistry 75:83–88. https://doi.org/10.1016/j.bioelechem.2009.02.002

    Article  CAS  PubMed  Google Scholar 

  11. Guo C, Li M, Xu Y, Li T, Ren Z, Bai J (2011) A Potential Green-Emitting Phosphor Ca 8 Mg(SiO 4) 4 Cl 2 :Eu 2+ for White Light Emitting Diodes Prepared By Sol-Gel Method. Appl Surf Sci 257:8836–8839. https://doi.org/10.1016/j.apsusc.2011.04.074

    Article  CAS  Google Scholar 

  12. Lei B, Sha L, Zhang H, Liu Y, Man SQ, Yue S (2010) Preparation and Luminescence Properties of Green-Light-Emitting Afterglow Phosphor Ca8Mg(SiO4)4Cl2:Eu 2+. Solid State Sci 12:2177–2181. https://doi.org/10.1016/j.solidstatesciences.2010.09.020

    Article  CAS  Google Scholar 

  13. Zhang X, Liu X (1992) Luminescence Properties and Energy Transfer of Eu2+ Doped Ca8Mg ( SiO4) 4Cl2 Phosphors. J Electrochem Soc 139:622–625. https://doi.org/10.1149/1.2069268

    Article  CAS  Google Scholar 

  14. Wang J, Zhang M, Zhang Q, Ding W, Su Q (2007) The Photoluminescence and Thermoluminescence Properties of Novel Green Long-Lasting Phosphorescence Materials Ca8Mg(SiO4) 4Cl2:Eu2+,Nd3+. Appl Phys B Lasers Opt 87:249–254. https://doi.org/10.1007/s00340-007-2590-1

    Article  CAS  Google Scholar 

  15. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y (1996) A New Long Phosphorescent Phosphor with High Brightness, SrAl2 O 4 : Eu2 + , Dy3 +. J Electrochem Soc 143:2670–2673. https://doi.org/10.1149/1.1837067

    Article  CAS  Google Scholar 

  16. Lu Y, Shi G, Zhang Q, Wang H, Li Y (2012) Photoluminescence Properties of Eu 2+ and mg 2+ Co-Doped CaSi 2O 2N 2 Phosphor For White Light LEDs. Ceram Int 38:3427–3433. https://doi.org/10.1016/j.ceramint.2011.12.055

    Article  CAS  Google Scholar 

  17. Li J, Zhang H, Lei B, Qin J, Liu Y, Xiao Y, Zheng M, Sha L (2013) Luminescent Properties Of Green Long-Lasting Ca8Mg(SiO 4)4Cl2:Eu2+, from Ca 2SiO4:Eu3+ and MgCl2 at low Temperature. Phys B Condens Matter 430:31–35. https://doi.org/10.1016/j.physb.2013.08.017

    Article  CAS  Google Scholar 

  18. Koo HY, Hong SK, Han JM, Kang YC (2008) Eu-doped Ca8Mg(SiO4)4Cl2 Phosphor Particles Prepared by Spray Pyrolysis from the Colloidal Spray Solution Containing Ammonium Chloride. J Alloys Compd 457:429–434. https://doi.org/10.1016/j.jallcom.2007.02.138

    Article  CAS  Google Scholar 

  19. El Nahrawy AM (2015) Structural Studies Of Sol gel Prepared NANO-Crystalline Silica Zinc Titanate ceramic. IJAETCS Sci 2:15–18

  20. El-Nahrawy AM, Abou Hammad AB, Khattab TA et al (2020) Development of Electrically Conductive Nanocomposites from Cellulose Nanowhiskers, Polypyrrole and Silver Nanoparticles Assisted with Nickel(Iii) Oxide Nanoparticles. React Funct Polym 149:104533. https://doi.org/10.1016/j.reactfunctpolym.2020.104533

    Article  CAS  Google Scholar 

  21. Nahrawy AME, Haroun AA, Hammad ABA, Diab MA, Kamel S (2019) Uniformly Embedded Cellulose/Polypyrrole-TiO2 Composite in Sol-Gel Sodium Silicate Nanoparticles: Structural and Dielectric Properties. Silicon 11:1063–1070. https://doi.org/10.1007/s12633-018-9910-4

    Article  CAS  Google Scholar 

  22. El Nahrawy AM, Hammad ABA, Youssef AM et al (2019) Thermal, Dielectric and Antimicrobial Properties of Polystyrene-Assisted/ITO:Cu Nanocomposites. Appl Phys A Mater Sci Process 125. https://doi.org/10.1007/s00339-018-2351-5

  23. El-Nahrawy AM, Elokr MM, Metawe F, Osman BAA (2016) Characteristics and Magnetic Properties of ((80-X) P 2 O 5 : 20 Sio 2 : X Al 2 O 3) and Doped with Ni 2 O 3 Prepared by Sol Gel Method. J Ovonic Res 12:253–259

    CAS  Google Scholar 

  24. El Nahrawy AM, Hemdan BA, Abou Hammad AB et al (2019) Microstructure and Antimicrobial Properties of Bioactive Cobalt Co-Doped Copper Aluminosilicate Nanocrystallines. Silicon in press:1–11. https://doi.org/10.1007/s12633-019-00326-y

  25. El Nahrawy AM, Montaser AS, Abou Hammad AB et al (2019) Copper Lithium Silicate/ZrO2 Nanoparticles-Coated Kevlar for Improving UV-Vis Absorbance/ Protection Properties. Silicon:1–8. https://doi.org/10.1007/s12633-019-00271-w

  26. Tripathi H, Rath C, Kumar AS, Manna PP, Singh SP (2019) Structural, Physico-Mechanical and In-Vitro Bioactivity Studies on SiO2–CaO–P2O5–SrO–Al2O3 Bioactive Glasses. Mater Sci Eng C 94:279–290. https://doi.org/10.1016/j.msec.2018.09.041

    Article  CAS  Google Scholar 

  27. Shi Q, Kang J, Qu Y, Liu S, Khater GA, Li S, Wang Y, Yue Y (2018) Effect of rare-earth oxides on structure and chemical resistance of calcium aluminophosphate glasses. J Non-Cryst Solids 491:71–78. https://doi.org/10.1016/j.jnoncrysol.2018.04.010

  28. Elokr MM, Metawe F, El Nahrawy AM, Osman BAAA (2016) Enhanced Structural and Spectroscopic Properties of Phosphosilicate Nanostructures by Doping with Al2O3 Ions and Calcinations Temperature. Int J ChemTech Res 9:228–234

    CAS  Google Scholar 

  29. Wu X, Meng G, Wang S, Wu F, Huang W, Gu Z (2015) Zn and Sr Incorporated 64S Bioglasses: Material Characterization, In-vitro Bioactivity and Mesenchymal Stem Cell Responses. Mater Sci Eng C 52:242–250. https://doi.org/10.1016/j.msec.2015.03.057

    Article  CAS  Google Scholar 

  30. Almeida RM, Du XM, Barbier D, Orignac X (1999) Er3+−Doped Multicomponent Silicate Glass Planar Waveguides Prepared by Sol-Gel processing. J Sol-Gel Sci Technol 14:209–216. https://doi.org/10.1023/A:1008794202103

    Article  CAS  Google Scholar 

  31. Elnahrawy AM, Ali AI (2014) Influence of Reaction Conditions on Sol-Gel Process Producing SiO2 and SiO2 -P2O5 Gel And Glass. NJGC 04:42–47. https://doi.org/10.4236/njgc.2014.42006

  32. El Nahrawy AM, Mansour AM, Abou Hammad AB et al (2020) Optical, Functional Impact and Antimicrobial of Chitosan/Phosphosilicate/Al2O3 Nanosheets. J Inorg Organomet Polym Mater 30:3084–3094. https://doi.org/10.1007/s10904-020-01469-x

    Article  CAS  Google Scholar 

  33. El Nahrawy AM, Abou Hammad AB, Bakr AM et al (2020) Sol–Gel Synthesis and Physical Characterization of High Impact Polystyrene Nanocomposites Based on Fe2O3 Doped with ZnO. Appl Phys A Mater Sci Process 126:654. https://doi.org/10.1007/s00339-020-03822-w

    Article  CAS  Google Scholar 

  34. Elkanzi NAA, Farag AAM, Roushdy N, Mansour AM (2020) Design, Fabrication and Optical Characterizations of Pyrimidine Fused Quinolone Carboxylate Moiety for Photodiode Applications. Optik (Stuttg) 216. https://doi.org/10.1016/j.ijleo.2020.164882

  35. Mansour AM (2019) Fabrication and Characterization of a Photodiode Based on 5′,5′′-dibromo-o-cresolsulfophthalein (BCP). Silicon 11:1989–1996. https://doi.org/10.1007/s12633-018-0016-9

    Article  CAS  Google Scholar 

  36. Hemdan BA, El Nahrawy AM, Mansour AM, Hammad ABA (2019) Green Sol–Gel Synthesis of Novel Nanoporous Copper Aluminosilicate for the Eradication of Pathogenic Microbes in Drinking Water and Wastewater Treatment. Environ Sci Pollut Res 26:9508–9523. https://doi.org/10.1007/s11356-019-04431-8

    Article  CAS  Google Scholar 

  37. Mansour AM, Nasr M, Saleh HA, Mahmoud GM (2019) Physical Characterization of 5′,5″-dibromo-o-cresolsulfophthalein (BCP) Spin-Coated Thin Films and BCP/p-Si Based Diode. Appl Phys A Mater Sci Process 125. https://doi.org/10.1007/s00339-019-2920-2

  38. Yang H, Lu Q, Gao F, Shi Q, Yan Y, Zhang F, Xie S, Tu B, Zhao D (2005) One-Step Synthesis of Highly Ordered Mesoporous Silica Monoliths with Metal Oxide Nanocrystals in their Channels. Adv Funct Mater 15:1377–1384. https://doi.org/10.1002/adfm.200500026

    Article  CAS  Google Scholar 

  39. Mansour AM, El Radaf IM (2019) Structural, Optical and Electrical Properties of CuBiS2 Thin Films Deposited by Spray Pyrolysis at Different Deposition Times. Int J Microstruct Mater Prop 14:419–431. https://doi.org/10.1504/IJMMP.2019.102219

    Article  CAS  Google Scholar 

  40. Mansour AM, El Radaf IM, Mahmoud GM (2019) Effect of Deposition Temperature on Structural, Optical and Electrical Properties of Chemically Deposited Thermochromic Cu2HgI4 Thin Films. Int J Microstruct Mater Prop 14:462–477. https://doi.org/10.1504/IJMMP.2019.102223

    Article  CAS  Google Scholar 

  41. El Nahrawy AM, Mansour AM, Abou Hammad AB, Wassel AR (2019) Effect of Cu Incorporation on Morphology and Optical Band Gap Properties of Nano-Porous Lithium Magneso-Silicate (LMS) Thin Films. Mater Res Express 6:016404. https://doi.org/10.1088/2053-1591/aae343

    Article  CAS  Google Scholar 

  42. Elnahrawy AM, Mansour AM, AbouHammad AB, Wassel AR (2018) Effect of Cu Incorporation on Morphology and Optical Band Gap Properties of Nano-Porous Lithium Magneso-Silicate (LMS) Thin Films. Mater Res Express in press. https://doi.org/10.1088/2053-1591/aae343

  43. Hassan N, Mansour AM, Roushdy N, Farag AAM, Osiris WG (2018) Optical Sensing Performance Characteristics of Schottky Devices Diodes Based Nano-Particle Disodium 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl)azo]-2-naphthalenesulfonate thin films: A Comparison Study. Optik (Stuttg) 158:1255–1265. https://doi.org/10.1016/j.ijleo.2017.12.203

    Article  CAS  Google Scholar 

  44. Farag AAM, Osiris WG, Ammar AH, Mansour AM (2013) Electrical and photosensing performance of heterojunction device based on organic thin film structure. Synth Met 175:81–87. https://doi.org/10.1016/j.synthmet.2013.04.030

    Article  CAS  Google Scholar 

  45. Omar NAS, Fen YW, Matori KA, Zaid MHM, Samsudin NF (2016) Structural and Optical Properties of Eu3+ Activated Low Cost Zinc Soda Lime Silica Glasses. Results Phys 6:640–644. https://doi.org/10.1016/J.RINP.2016.09.007

    Article  Google Scholar 

  46. Iu XYL, Uo HG, Ai SXD et al (2016) Energy Transfer and Thermal Stability in for Organic-Resin-Free UV LEDs. Opt Mater Express 6:158–164. https://doi.org/10.1364/OME.6.003574

    Article  Google Scholar 

  47. Gökçe M, Şentürk U, Uslu DK, Burgaz G, Şahin Y, Gürhan Gökçe A (2017) Investigation of Europium Concentration Dependence on the Luminescent Properties of Borogermanate Glasses. J Lumin 192:263–268. https://doi.org/10.1016/j.jlumin.2017.06.041

    Article  CAS  Google Scholar 

  48. Liu L, Qin N, Bao D (2015) Structural, Optical, and Photoluminescent Properties Of Sol–Gel Derived Eu-Doped Ba1−xSrxTiO3 Thin Films. J Mater Sci Mater Electron 26:3403–3408. https://doi.org/10.1007/s10854-015-2847-0

    Article  CAS  Google Scholar 

  49. Omar NAS, Fen YW, Matori KA, Zaid MHM, Norhafizah MR, Nurzilla M, Zamratul MIM (2016) Synthesis and Optical Properties of Europium Doped Zinc Silicate Prepared Using Low Cost Solid State Reaction Method. J Mater Sci Mater Electron 27:1092–1099. https://doi.org/10.1007/s10854-015-3856-8

    Article  CAS  Google Scholar 

  50. Sun XY, Jiang DG, Sun YZ, Zhang X, Hu QL, Huang Y, Tao Y (2014) Eu3 +−Activated B2O3-GeO 2-RE2O3 (RE = Y3 +, La3 + and Gd3 +) Borogermanate Scintillating Glasses. J Non-Cryst Solids 389:72–77. https://doi.org/10.1016/j.jnoncrysol.2014.01.042

    Article  CAS  Google Scholar 

  51. Zhang L, Zheng X (2006) A Novel Electrogenerated Chemiluminescence Sensor for Pyrogallol with Core-Shell Luminol-Doped Silica Nanoparticles Modified Electrode by the Self-Assembled Technique. Anal Chim Acta 570:207–213. https://doi.org/10.1016/j.aca.2006.04.018

    Article  CAS  PubMed  Google Scholar 

  52. Sun XY, Zhang X, Chen HH, Hu QL, Wang WF, Zhang ZJ, Zhao JT (2014) Investigation on the Luminescent Properties of Eu3 +−Activated Dense Oxyfluoride Borogermanate Scintillating Glasses. J Non-Cryst Solids 404:162–166. https://doi.org/10.1016/j.jnoncrysol.2014.08.020

    Article  CAS  Google Scholar 

  53. Li G, Lai Y, Cui T, Yu H, Liu D, Gan S (2010) Luminescence Properties and Charge Compensation of Sr3Al 2O6 Doped with Ce3+ and Alkali Metal Ions. Mater Chem Phys 124:1094–1099. https://doi.org/10.1016/j.matchemphys.2010.08.039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was not financially supported, and the National Research Centre of Egypt facilitates the work and the characterization tools.

Funding

Authors declare that this article has not any supported and the authors completely supported their article.

Author information

Authors and Affiliations

Authors

Contributions

Amany Mohamed El Nahrawy: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

A.M. Mansour& Ali B. Abou Hammad: Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Corresponding author

Correspondence to Amany M. El Nahrawy.

Ethics declarations

This research doesn’t involve Human Participants and/or Animals.

Conflict of Interest

The authors announce that they have no conflict of interests.

Consent to Participate

Authors confirm their participation.

Consent for Publication

The authors confirm their acceptance for Publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Nahrawy, A.M., Mansour, A.M. & Abou Hammad, A.B. Spectroscopic Study of Eu3+-Doped Magnesium Lanthanum Phosphate (MLPO) Films on SiO2 Substrate. Silicon 14, 1227–1234 (2022). https://doi.org/10.1007/s12633-020-00855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00855-x

Keywords

Navigation