Skip to main content
Log in

Stacking fault, dislocation dissociation, and twinning in Pt3Hf compounds: a DFT study

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The Pt3Hf compound plays a decisive role in strengthening Pt–Hf alloy systems. Evaluating the stacking fault, dislocation dissociation, and twinning mechanisms in Pt3Hf is the first step in understanding its plastic behavior. In this work, the generalized stacking fault energies (GSFE), including the complex stacking fault (CSF), the superlattice intrinsic stacking fault (SISF), and the antiphase boundary (APB) energies, are calculated using first-principles calculations. The dislocation dissociation, deformation twinning, and yield behavior of Pt3Hf are discussed based on GSFE after their incorporation into the Peierls-Nabarro model. We found that the unstable stacking fault energy (γus) of (111)APB is lower than that of SISF and (010) APB, implying that the energy barrier and critical stress required for (111)APB generation are lower than those required for (010)APB formation. This result indicates that the \(a\left\langle {1\bar{1}0} \right\rangle\) superdislocation will dissociate into two collinear \({a \mathord{\left/ {\vphantom {a 2}} \right. \kern-0pt} 2}\left\langle {1\bar{1}0} \right\rangle\) superpartial dislocations. The \({a \mathord{\left/ {\vphantom {a 2}} \right. \kern-0pt} 2}\left\langle {1\bar{1}0} \right\rangle\) dislocation could further dissociate into a \({a \mathord{\left/ {\vphantom {a 6}} \right. \kern-0pt} 6}\left\langle {\bar{1}\bar{1}2} \right\rangle\) Shockley dislocation and a \({a \mathord{\left/ {\vphantom {a 3}} \right. \kern-0pt} 3}\left\langle {2\bar{1}\bar{1}} \right\rangle\) super-Shockley dislocation connected by a SISF, which results in an APB → SISF transformation. The study also discovered that Pt3Hf exhibits normal yield behavior, although the cross-slip of a \({a \mathord{\left/ {\vphantom {a 2}} \right. \kern-0pt} 2}\left\langle {1\bar{1}0} \right\rangle\) dislocation is not forbidden, and the anomalous yield criterion is satisfied. Moreover, it is observed that the energy barrier and critical stress for APB formation increases with increasing pressure and decreases as the temperature is elevated. When the temperature rises above 1400 K, the \({a \mathord{\left/ {\vphantom {a 2}} \right. \kern-0pt} 2}\left\langle {1\bar{1}0} \right\rangle\) dislocation slipping may change from the {111} planes to the {100} planes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yamabe-Mitarai Y, Gu Y, Huang C, Völkl R, Harada H. Platinum-group-metal-based intermetallics as high-temperature structural materials. JOM. 2004;56(9):34.

    Article  CAS  Google Scholar 

  2. Vorberg S, Fischer B, Wenderoth M, Glatzel U, Völkl R. A TEM investigation of the γ/γ′ phase boundary in Pt-based superalloys. JOM. 2005;57(3):49.

    Article  CAS  Google Scholar 

  3. Cornish BLA, Süss R, Douglas A, Chown LH, Glaner L. The platinum development initiative: platinum-based alloys for high temperature and special applications: part I. Platinum Metals Rev. 2009;53(1):2.

    Article  CAS  Google Scholar 

  4. Cornish LA, Fischer B, Völkl R. Development of platinum-group-metal superalloys for high-temperature use. MRS Bull. 2011;28(9):632.

    Article  Google Scholar 

  5. Fan Y, Xu S, Guo J, Qin G. Tensile properties and microstructures of multilayer PtTiZr/Ti laminate composites prepared by hot pressing and rolling. Mater Sci Eng, A. 2016;673(15):233.

    Article  CAS  Google Scholar 

  6. Zaikina OV, Khoruzha VG, Kornienko KE, Velikanova TY. Phase equilibria in the aluminum corner of the Al–Ti–Pt system, powder. Metall. Met. Ceram. 2018;57(1):114.

    Article  CAS  Google Scholar 

  7. Hill PJ, Biggs T, Ellis P, Hohls J, Taylor S, Wolff IM. An assessment of ternary precipitation-strengthened Pt alloys for ultra-high temperature applications. Mater Sci Eng, A. 2001;301(2):167.

    Article  Google Scholar 

  8. Fairbank GB, Humphreys CJ, Kelly A, Jones CN. Ultra-high temperature intermetallics for the third millennium. Intermetallics. 2000;8(9):1091.

    Article  CAS  Google Scholar 

  9. Alvey MD, George PM. ZrPt3 as a high-temperature, reflective, oxidation-resistant coating for carbon-carbon composites. Carbon. 1991;29(4):523.

    Article  CAS  Google Scholar 

  10. Xiong K, Lu H, Gu J. Atomistic simulations of the nanoindentation-induced incipient plasticity in Ni3Al crystal. Comp Mater Sci. 2016;115(1):214.

    Article  CAS  Google Scholar 

  11. Benamer A, Roumili A, Medkour Y, Charifi Z. First principle study of structural, elastic and electronic properties of APt3 (A = Mg, Sc, Y and Zr). Philos Mag. 2017;98(5):408.

    Article  Google Scholar 

  12. Rudnik Y, Völkl R, Vorberg S, Glatzel U. The effects of Ta additions on the phase compositions and high temperature properties of Pt base alloys. Mater Sci Eng, A. 2008;479(1–2):306.

    Article  Google Scholar 

  13. Völkl R, Wenderoth M, Preussner J, Vorberg S, Fischer B, Yamabe-Mitarai Y, Harada H, Glatzel U. Development of a precipitation-strengthened Pt-base superalloy. Mater Sci Eng, A. 2009;510–511(15):328.

    Article  Google Scholar 

  14. Stalick JK, Waterstrat RM. The Hafnium-platinum phase diagram. J Phase Equilibra Diff. 2013;35(1):15.

    Article  Google Scholar 

  15. Yang B, Guo C, Li C, Du Z. Thermodynamic modelling of the Hf–Pt system. Int J Mater Res. 2018;109(9):851.

    Article  CAS  Google Scholar 

  16. Wertheim GK, Buchanan DNE, Wernick JH. Charge transfer in intermetallics: HfPt3. Phys. Rev. B. 1989;40(8):5319.

    Article  CAS  Google Scholar 

  17. Meschter PJ, Worrell WL. An investigation of high temperature thermodynamic properties in the Pt-Zr and Pt-Hf systems. Metall Trans A. 1977;8(3):503.

    Article  Google Scholar 

  18. Li Z, Xiong K, Sun Y, Jin C, Zhang S, He J, Mao Y. First-principles study of mechanical and thermodynamic properties of intermetallic Pt3M (M = Al, Hf, Zr Co, Y, Sc). Comput Condens Matter. 2020;23:e00462.

    Article  Google Scholar 

  19. Li Z, Xiong K, Sun Y, Chen X, He J, Zhang S, Fu Y, Mao Y. First-principles investigations of structural, elastic, thermodynamic and electronic properties of Pt3Hf compound under pressure. In: IOP Conf. Ser.: Mater. Sci. Eng. 2020;773:012030.

  20. Sun YJ, Xiong K, Zhang SM, Mao Y. First-principles investigations on the elastic properties of platinum group metals (Pt, Pd, and Ru). Mater Sci Forum. 2019;944:761.

    Article  Google Scholar 

  21. Guan YM, Xu SY, Guo JX, Qin GY. Hardening behavior of Pt–Ti microalloys. J Alloys Compd. 2015;645(5):34.

    Article  CAS  Google Scholar 

  22. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169.

    Article  CAS  Google Scholar 

  23. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953.

    Article  Google Scholar 

  24. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758.

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.

    Article  CAS  Google Scholar 

  26. Pack JD, Monkhorst HJ. Special points for Brillouin-zone integrations—a reply. Phys. Rev. B. 1977;16(4):1748.

    Article  Google Scholar 

  27. Suzuki T, Oya Y, Ochiai S. The mechanical behavior of nonstoichiometric compounds Ni3Si, Ni3Ge, and Fe3Ga. Metall Trans A. 1984;15(1):173.

    Article  Google Scholar 

  28. Liebscher CH, Glatzel U. Configuration of superdislocations in the γ′-Pt3Al phase of a Pt-based superalloy. Intermetallics. 2014;48:71.

    Article  CAS  Google Scholar 

  29. Okamoto NL, Takemoto S, Chen ZMT, Yamaguchi M, Inui H. FCC metal-like deformation behaviour of Ir3Nb with the L12 structure. Int J Plast. 2017;97:145.

    Article  CAS  Google Scholar 

  30. Oya-Seimiya Y, Shinoda T, Suzuki T. Low temperature strength anomaly of L12 type intermetallic compounds Co3Ti and Pt3Al. Mater Trans, JIM. 1996;37(9):1464.

    Article  CAS  Google Scholar 

  31. Suzuki K, Ichihara M, Takeuchi S. Dissociated structure of superlattice dislocations in Ni3Ga with the L12 structure. Acta Metall. 1979;27(2):193.

    Article  CAS  Google Scholar 

  32. Eggeler YM, Müller J, Titus MS, Suzuki A, Pollock TM, Spiecker E. Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys. Acta Mater. 2016;113:335.

    Article  CAS  Google Scholar 

  33. Lu G. The Peierls—Nabarro model of dislocations: a venerable theory and its current development, Edited by S. Yip. In: Handbook of Materials Modeling 2005. Springer, Dordrecht, 2005,793.

  34. Bulatov VV, Kaxiras E. Semidiscrete variational peierls framework for dislocation core properties. Phys Rev Lett. 1997;78(22):4221.

    Article  CAS  Google Scholar 

  35. Jahnátek M, Hafner J, Krajčí M. Shear deformation, ideal strength, and stacking fault formation of fcc metals: a density-functional study of Al and Cu. Phys Rev B. 2009;79(22):224103.

    Article  Google Scholar 

  36. Cho CH, Cha HY, Sung HK. Characterization of stiffness coefficients of silicon versus temperature using “Poisson’s ratio” measurements. J Semicond Technol Sci. 2016;16:153.

    Article  Google Scholar 

  37. Kamimura Y, Edagawa K, Iskandarov AM, Osawa M, Umeno Y, Takeuchi S. Peierls stresses estimated via the Peierls-Nabarro model using ab initio γ-surface and their comparison with experiments. Acta Mater. 2018;148:355.

    Article  CAS  Google Scholar 

  38. Tadmor EB, Bernstein N. A first-principles measure for the twinnability of FCC metals. J Mech Phys Solids. 2004;52(11):2507.

    Article  CAS  Google Scholar 

  39. Liu LL, Wu XZ, Wang R, Li WG, Liu Q. Stacking fault energy, yield stress anomaly, and twinnability of Ni3Al: a first principles study. Chin Phys B. 2015;24(7):077102.

    Article  Google Scholar 

  40. Wen YF, Sun J. Generalized planar fault energies and mechanical twinning in gamma TiAl alloys. Scripta Mater. 2013;68(9):759.

    Article  CAS  Google Scholar 

  41. Kibey S, Liu JB, Johnson DD, Sehitoglu H. Energy pathways and directionality in deformation twinning. Appl Phys Lett. 2007;91(18):181916.

    Article  Google Scholar 

  42. Kibey S, Liu JB, Johnson DD, Sehitoglu H. Predicting twinning stress in fcc metals: linking twin-energy pathways to twin nucleation. Acta Mater. 2007;55(20):6843.

    Article  CAS  Google Scholar 

  43. Okamoto NL, Hasegawa Y, Inui H. Plastic deformation of single crystals of Pt3Al with the L12 structure having a far Al-rich off-stoichiometric composition of Pt-29at.%Al. Philos Mag. 2014;94(12):1327.

    Article  CAS  Google Scholar 

  44. Gao X, Wang J, Wu X, Wang R, Jia Z. Effects of alloying atoms on antiphase boundary energy and yield stress anomaly of L12 intermetallics: first-principles study. Crystals. 2018;8(2):96.

    Article  Google Scholar 

  45. Noguchi O, Oya Y, Suzuki T. The effect of nonstoichiometry on the positive temperature dependence of strength of Ni3AI and Ni3Ga. Metall Trans A. 1981;12(9):1647.

    Article  CAS  Google Scholar 

  46. Mishima Y, Oya Y, Suzuki T. Characteristic mechanical properties and phase stability of L12 intermetallic compounds. In: MRS proceedings, 1984, 39.

  47. Caillard D. Yield-stress anomalies and high-temperature mechanical properties of intermetallics and disordered alloys. Mater Sci Eng, A. 2001;319:74.

    Article  Google Scholar 

  48. Yoo MH. On the theory of anomalous yield behavior of Ni3Al—effect of elastic anisotropy. Scr Metall. 1986;20(6):915.

    Article  CAS  Google Scholar 

  49. Vitek V, Paidar V. Chapter 87-Non-planar dislocation cores: a ubiquitous phenomenon affecting mechanical properties of crystalline materials. Dislocations in Solids. 2008;14:439.

    Article  Google Scholar 

  50. Shang SL, Zhang H, Wang Y, Liu ZK. Temperature-dependent elastic stiffness constants of alpha- and theta-Al2O3 from first-principles calculations. J Phys: Condens Matter. 2010;22(37):375403.

    Google Scholar 

  51. Zhang X, Grabowski B, Körmann F, Ruban AV, Gong Y, Reed RC, Hickel T, Neugebauer J. Temperature dependence of the stacking-fault Gibbs energy for Al, Cu, and Ni. Phys Rev B. 2018;98(22):224106.

    Article  CAS  Google Scholar 

  52. Breidi A, Allen J, Mottura A. First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys. Acta Mater. 2018;145:97.

    Article  CAS  Google Scholar 

  53. Liu L, Chen L, Jiang Y, He C, Xu G, Wen Y. Temperature effects on the elastic constants, stacking fault energy and twinnability of Ni3Si and Ni3Ge: a first-principles study. Crystals. 2018;8(9):364.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the National Natural Science Foundation of China (No. 51801179), and the Yunnan Science and Technology Projects (Nos. 2018ZE001, 2019ZE001-1, 202002AB080001, 2018FB083, and 2018FD011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Xiong or Yong Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SM., Xiong, K., Jin, CC. et al. Stacking fault, dislocation dissociation, and twinning in Pt3Hf compounds: a DFT study. Rare Met. 40, 1020–1030 (2021). https://doi.org/10.1007/s12598-020-01651-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01651-7

Keywords

Navigation