Skip to main content
Log in

High-pseudocapacitance of porous and square NiO@NC nanosheets for high-performance lithium-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Layered nickel oxides have been focused with intense research interests as high-performance lithium-ion batterie (LIB) anode. However, it is hard to obtain few layered nickel oxides material directly as it easily forms bulk material with the strong interaction between the interlayer. In this work, two-dimensional (2D) nickel-based coordination polymers were successfully prepared according to aqueous phase copolymerization approach. And then uniform carbon-doped NiO nanosheets were successfully obtained from facile solution assembly and post-thermal treatment. The detailed electrochemical testing shows that the uniform NiO nanocrystals encapsulated into porous N-doped carbon (NiO@NC) nanosheets present much higher rate capability with the discharge specific capacity of 782.7 mAh·g−1 at high current density of 2.0 A·g−1 than pure NiO (690 mAh·g−1). It also shows long-term cycling performance with 91% retention after 50 cycles at 1.0 A·g−1. The high rate capability, cycling stability and the easy synthesis make NiO@NC nanosheets as a promising candidate for LIB anode and build up new way for the fabrication of metal oxides anode materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fan HS, Yu H, Zhang YF, Guo J, Wang Z, Wang H, Zhao N, Zheng Y, Du CF, Dai ZF, Yan QY, Xu J. 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core–shell nanorods for advanced sodium ion batteries. Energy Storage Mater. 2018;10:48.

    Article  Google Scholar 

  2. Qiu RY, Fei RX, Zhang TQ, Liu XL, Jin J, Fan HS, Wang R, He BB, Gong YS, Wang HW. Biomass-derived, 3D interconnected N-doped carbon foam as a host matrix for Li/Na/K-selenium batteries. Electrochim Acta. 2020;356:136832.

    Article  CAS  Google Scholar 

  3. Xu CF, Zhang KW, Zhang D, Chang SL, Liang F, Yan PF, Yao YC, Qu T, Zhang J, Ma WH, Yang B, Dai YN, Sun XL. Reversible hybrid sodium-CO2 batteries with low charging voltage and long-life. Nano Energy. 2020;68:104318.

    Article  CAS  Google Scholar 

  4. Yang X, Wang YY, Hou BH, Liang HJ, Zhao XX, Fan HS, Wang G, Wu XL. Nano-SnO2 decorated carbon cloth as flexible, self-supporting and additive-free anode for sodium/lithium-ion batteries. Acta Metall Sin (Engl Lett). 2020. https://doi.org/10.1007/s40195-020-01001-7.

    Article  Google Scholar 

  5. Mohapatra S, Nair SV, Rai AK. Synthesis of Co3O4 nanoparticles wrapped within full carbon matrix as an anode material for lithium ion batteries. Acta Metall Sin (Engl Lett). 2017;31(2):164.

    Article  Google Scholar 

  6. Wang CY, Zeng XJ, Jiang GG, Chen M, Zhu LY, Yu RH. General self-template synthesis of transition-metal oxide microspheres and their excellent charge storage properties. Electrochim Acta. 2018;283:190.

    Article  CAS  Google Scholar 

  7. Liu XL, Wu JY, Wang MQ, Fan HS, Zhang YF. N-doped carbon nanocapsules as nanoreactors to boost lithium storage performance of Co-based oxide nanocrystallines. Ceram Int. 2020; 46(17):27608.

    Article  CAS  Google Scholar 

  8. Chen J, Wang Z, Mu JC, Ai B, Zhang TZ, Ge WQ, Zhang LP. Enhanced lithium storage capability enabled by metal nickel dotted NiO-graphene composites. J Mater Sci. 2018;54(2):1475.

    Article  Google Scholar 

  9. Hong YW, Yang JX, Xu JL, Choi WM. Template-free synthesis of hierarchical NiO microtubes as high performance anode materials for Li-ion batteries. Curr Appl Phys. 2019;19(6):715.

    Article  Google Scholar 

  10. Shao JX, Zhou H, Feng JH, Zhu MZ, Yuan AH. Facile synthesis of MOF-derived hollow NiO microspheres integrated with graphene foam for improved lithium-storage properties. J Alloys Compd. 2019;784:869.

    Article  CAS  Google Scholar 

  11. Chen XL, Xiao T, Wang SL, Li J, Xiang P, Jiang LH, Tan XY. Superior Li-ion storage performance of graphene decorated NiO nanowalls on Ni as anode for lithium ion batteries. Mater Chem Phys. 2019;222:31.

    Article  CAS  Google Scholar 

  12. Ma L, Pei XY, Mo DC, Heng Y, Lyu SS, Fu YX. Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries. J Mater Sci Mater Electron. 2019;30(6):5874.

    Article  CAS  Google Scholar 

  13. Jin WW, Li HJ, Zou JZ, Inguva S, Zhang Q, Zeng SZ, Xu GZ, Zeng XR. Metal organic framework-derived carbon nanosheets with fish-scale surface morphology as cathode materials for lithium-selenium batteries. J Alloys Compd. 2020;820:153084.

    Article  CAS  Google Scholar 

  14. Li T, Bai YL, Wang Y, Xu H, Jin H. Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coord Chem Rev. 2020;410:213221.

    Article  CAS  Google Scholar 

  15. Hou BH, Wang YY, Liu DS, Gu ZY, Feng X, Fan HS, Zhang TF, Lü CL, Wu XL. N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv Funct Mater. 2018;28(47):1805444.

    Article  Google Scholar 

  16. He HB, Li R, Yang ZH, Chai LY, Jin LF, Alhassan SI, Ren LL, Wang HY, Huang L. Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: a review. Catal Today. 2020. https://doi.org/10.1016/j.cattod.2020.02.033.

  17. Kaneti YV, Tang J, Salunkhe RR, Jiang X, Yu A, Wu KC, Yamauchi Y. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv Mater. 2017;29(12):1604898.

    Article  Google Scholar 

  18. Fang GZ, Zhou J, Liang CW, Pan AQ, Zhang C, Tang Y, Tan XP, Liu J, Liang SQ. MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy. 2016;26:57.

    Article  CAS  Google Scholar 

  19. Gautam S, Agrawal H, Thakur M, Akbari A, Sharda H, Kaur R, Amini M. Metal oxides and metal organic frameworks for the photocatalytic degradation: a review. J Environ Chem Eng. 2020;8(3):103726.

    Article  CAS  Google Scholar 

  20. Xiao XL, Peng SH, Wang C, Cheng D, Li N, Dong YL, Li QH, Wei DG, Liu P, Xie ZZ, Qu DY, Li X. Metal/metal oxide@carbon composites derived from bimetallic Cu/Ni-based MOF and their electrocatalytic performance for glucose sensing. J Electroanal Chem. 2019;841:94.

    Article  CAS  Google Scholar 

  21. Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci (Weinh). 2018;5(3):1700592.

    Article  Google Scholar 

  22. Indra A, Song T, Paik U. Metal organic framework derived materials: progress and prospects for the energy conversion and storage. Adv Mater. 2018;30(39):1705146.

    Article  Google Scholar 

  23. Lai YQ, Gan YQ, Zhang ZA, Chen W, Li J. Metal-organic frameworks-derived mesoporous carbon for high performance lithium-selenium battery. Electrochim Acta. 2014;146:134.

    Article  CAS  Google Scholar 

  24. Wang YY, Fan HS, Hou BH, Rui XH, Ning QL, Cui Z, Guo JZ, Yang Y, Wu XL. Ni1.5CoSe5 nanocubes embedded in 3D dual N-doped carbon network as advanced anode material in sodium-ion full cells with superior low-temperature and high-power properties. J Mater Chem A. 2018;6(45):22966.

    Article  CAS  Google Scholar 

  25. Fan HS, Yu H, Zhang YF, Zheng Y, Luo YB, Dai ZF, Li B, Zong Y, Yan QY. Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew Chem Int Ed. 2017;56(41):12566.

    Article  CAS  Google Scholar 

  26. Lin YM, Qiu ZZ, Li DZ, Ullah S, Hai Y, Xin HL, Liao WD, Yang B, Fan HS, Xu J, Zhu CZ. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 2018;11:67.

    Article  Google Scholar 

  27. Hibble SJ, Chippindale AM, Pohl AH, Hannon AC. Surprises from a simple material–the structure and properties of nickel cyanide. Angew Chem Int Ed. 2007;46(37):7116.

    Article  CAS  Google Scholar 

  28. Evmenenko G, Fister TT, Castro FC, Chen X, Lee B, Buchholz DB, Dravid VP, Fenter P, Bedzyk MJ. Structural analysis of the initial lithiation of NiO thin film electrodes. Phys Chem Chem Phys. 2019;21(17):8897.

    Article  CAS  Google Scholar 

  29. Liang HJ, Wu JY, Wang MQ, Fan HS, Zhang YF. Pseudocapacitance dominated high-performance and stable lithium-ion batteries from MOF-derived spinel ZnCo2O4/ZnO/C heterostructures anode. Dalton Trans. 2020;49:13311.

    Article  CAS  Google Scholar 

  30. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7(5):1597.

    Article  CAS  Google Scholar 

  31. Shi LD, Li DZ, Yao PP, Yu JL, Li CH, Yang B, Zhu CZ, Xu J. SnS2 nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium-ion batteries. Small. 2018;14(41):1802716.

    Article  Google Scholar 

  32. Sun WW, Tao XC, Du PP, Wang Y. Carbon-coated mixed-metal sulfide hierarchical structure: MOF-derived synthesis and lithium-storage performances. Chem Eng J. 2019;366:622.

    Article  CAS  Google Scholar 

  33. Sun R, Qin ZX, Li ZY, Fan HS, Lu SJ. Binary zinc-cobalt metal-organic framework derived mesoporous ZnCo2O4@NC polyhedron as a high-performance lithium-ion battery anode. Dalton Trans. 2020; 49:14237.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21676060), the Natural Science Foundation of Guangdong Province of China (No. 2018A030313516) and the Science and Technology Planning Project of Guangzhou (No. 201804010449).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-Sen Fan or Yu-Fei Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, ZL., Peng, ZL., Wang, MQ. et al. High-pseudocapacitance of porous and square NiO@NC nanosheets for high-performance lithium-ion batteries. Rare Met. 40, 1451–1458 (2021). https://doi.org/10.1007/s12598-020-01630-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01630-y

Keywords

Navigation