Skip to main content
Log in

Photocatalytic and photochemical processes of AgCl/TiO2 studied with a fully integrated X-ray photoelectron spectrometer

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A fully integrated X-ray photoelectron spectrometer (XPS) was employed for the investigation of the separation processes and recombination behaviors of photogenerated electrons and holes on the surface of AgCl and ultra-small nano-titanium oxide cluster composite photocatalyst (AgCl/TiO2). A facile route, by direct colloidal synthesis, for preparing AgCl/TiO2 with high stability and enhanced visible light (Vis) driven catalytic activity was reported. The photocatalytic activity of AgCl/TiO2, which revealed that the photo-degradation rate of the as-prepared AgCl/TiO2 was nearly 10.5 times higher than that of bare AgCl, was evaluated by applying it to the photo-degradation of methyl orange (MO) in water solution. Moreover, AgCl/TiO2 exhibited an outstanding long-term stability during ten cycles of photo-degradation. The band gap of AgCl decreased from 3.25 to 2.85 eV because of the ultra-small nano-TiO2 clusters that were pinned to its surface. The results indicate that the band gap narrowing and surface plasmon resonance (SPR) of Ag (0) were two major contributors to the enhancement of the photocatalytic activity of AgCl/TiO2 by improving the utilization of Vis. In situ XPS analysis was, therefore, certified as a beneficial method to explore the catalytic mechanism of photocatalysts.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh AK, Montoya JH, Gregoire JM, Persson KA. Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nat. Commun. 2019;10(1):443.

    Article  CAS  Google Scholar 

  2. Ran J, Jaroniec M, Qiao SZ. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater. 2018;30(7):1704649.

    Article  Google Scholar 

  3. Yang DX, Qu D, Miao X, Jiang WS, An L, Wen YJ, Wu DD, Sun ZC. TiO2 sensitized by red, green, blue-emissive carbon dots for enhanced H2 production. Rare Met. 2019;38(5):404.

    Article  CAS  Google Scholar 

  4. Wang C, Li A, Li C, Zhang S, Li H, Zhou X, Hu L, Feng Y, Wang K, Zhu Z, Shao R, Chen Y, Gao P, Mao S, Huang J, Zhang Z, Han X. Ultrahigh photocatalytic rate at a single-metal-atom-oxide. Adv Mater. 2019;31(52):1903491.

    Article  CAS  Google Scholar 

  5. Hu Z, Li K, Wu X, Wang N, Li X, Li Q, Li L, Lv K. Dramatic promotion of visible-light photoreactivity of TiO2 hollow microspheres towards NO oxidation by introduction of oxygen vacancy. Appl Catal B-Environ. 2019;256:117860.

    Article  CAS  Google Scholar 

  6. Wang T, Jia LW, Wang XT, Wang G, Luo FQ, Wang JM. Enhancing low temperature NOx storage and reduction performance of a Pt-Based lean NOx trap catalyst. Rare Met. 2019;38(1):81.

    Article  CAS  Google Scholar 

  7. Zhang P, Lu XF, Luan D, Lou WX. Fabrication of heterostructured Fe2TiO5-TiO2 nanocages with enhanced photoelectrochemical performance for solar energy conversion. Angew Chem Int Ed. 2020;59(21):8128.

    Article  CAS  Google Scholar 

  8. Chen Y, Li S, Zhao RY, Li W, Ren ZH, Han GR. Single-crystal TiO2/SrTiO3 Core-shell heterostructured nanowire arrays for enhanced photoelectrochemical performance. Rare Met. 2019;38(5):369.

    Article  CAS  Google Scholar 

  9. Yang W, Wang X, Hao W, Wu Q, Peng J, Tu J, Cao Y. 3D hollow-out TiO2 nanowire cluster/GOx as an ultrasensitive photoelectrochemical glucose biosensor. J Mater Chem B. 2020;8(11):2363.

    Article  CAS  Google Scholar 

  10. Zhang H, Banfield JF. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B. 2000;104(15):3481.

    Article  CAS  Google Scholar 

  11. Okamoto K, Yamamoto Y, Tanaka H, Tanaka M, Itaya A. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bull Chem Soc Jpn. 1985;58(7):2015.

    Article  CAS  Google Scholar 

  12. Nakajima A, Koizumi S, Watanabe T, Hashimoto K. Effect of repeated photo-illumination on the wettability conversion of titanium dioxide. J Photoch Photobio A. 2001;146(1):129.

    Article  CAS  Google Scholar 

  13. Chen X, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science. 2011;331(6018):746.

    Article  CAS  Google Scholar 

  14. Albiter E, Hai Z, Alfaro S, Remita H, Valenzuela MA, Colbeau-Justin C. A comparative study of photo-assisted deposition of silver nanoparticles on TiO2. J Nanosci Nanotechnol. 2013;13(7):4943.

    Article  CAS  Google Scholar 

  15. Zhang Y, Hu Y, Zhao J, Park E, Jin Y, Liu Q, Zhang W. Covalent organic framework-supported Fe-TiO2 nanoparticles as ambient-light-active photocatalysts. J Mater Chem A. 2019;7(27):16364.

    Article  CAS  Google Scholar 

  16. Gao Y, Lin J, Zhang Q, Yu H, Ding F, Xu B, Sun Y, Xu Z. Facile synthesis of heterostructured YVO4/g-C3N4/Ag photocatalysts with enhanced visible-light photocatalytic performance. Appl Catal B-Environ. 2018;224:586.

    Article  CAS  Google Scholar 

  17. Liang Y, Wang H, Liu L, Cui W. Facile synthesis of Ag@AgCl plasmonic photocatalyst and its photocatalytic degradation under visible light. Rare Metal Mat. Eng. 2015;44(5):1088.

    Article  CAS  Google Scholar 

  18. Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo MH. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed. 2008;47(41):7931.

    Article  CAS  Google Scholar 

  19. Wang D, Li Y, Puma GL, Wang C, Wang P, Zhang W, Wang Q. Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light driven plasmon photocatalyst. Chem Commun. 2013;49(88):10367.

    Article  CAS  Google Scholar 

  20. Wang X, Yu J, Fu C, Li T, Yu H. Self-templated formation of AgCl/TiO2 hollow octahedra for improved visible-light photocatalytic activity. Appl Surf Sci. 2019;494:740.

    Article  CAS  Google Scholar 

  21. Shi HF, Yan G, Zhang Y, Tan HQ, Zhou WZ, Ma YY, Li YG, Chen W, Wang EB. Ag/AgxH3–xPMo12O40 nanowires with enhanced visible-light-driven photocatalytic performance. ACS Appl. Mater. Inter. 2017;9(1):422.

    Article  CAS  Google Scholar 

  22. Shi H, Chen J, Li G, Nie X, Zhao H, Wong PK, An T. Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light. ACS Appl. Mater. Inter. 2013;5(15):6959.

    Article  CAS  Google Scholar 

  23. Garazhian Z, Rezaeifard A, Jafarpour M, Farrokhi A. Mo72Fe30 nanoclusters for the visible-light-driven photocatalytic degradation of organic dyes. ACS Appl. Nano Mater. 2020;3(1):648.

    Article  CAS  Google Scholar 

  24. Wang K, Shu S, Chen M, Li J, Zhou K, Pan J, Wang X, Li X, Sheng J, Dong F, Jiang G. Pd-TiO2 Schottky heterojunction catalyst boost the electrocatalytic hydrodechlorination reaction. Chem Eng J. 2020;381:122673.

    Article  CAS  Google Scholar 

  25. Requejo FG, Hebenstreit ELD, Ogletree DF, Salmeron M. An in situ XPS study of site competition between CO and NO on Rh(111) in equilibrium with the gas phase. J Catal. 2004;226(1):83.

    Article  CAS  Google Scholar 

  26. Zhu M, Chen P, Liu M. Sunlight-driven plasmonic photocatalysts based on Ag/AgCl nanostructures synthesized via an oil-in-water medium: enhanced catalytic performance by morphology selection. J Mater Chem. 2011;21(41):16413.

    Article  CAS  Google Scholar 

  27. Yao X, Liu X. One-pot synthesis of Ag/AgCl@SiO2 core-shell plasmonic photocatalyst in natural geothermal water for efficient photocatalysis under visible light. J. Mol. Catal. A-Chem. 2014;393:30.

    Article  CAS  Google Scholar 

  28. Huang H, Li X, Kang Z, Liu Y, Li H, He X, Lian S, Liu J, Lee ST. Tuning metal@metal salt photocatalytic abilities by different charged anions. Dalton Trans. 2010;39(44):10593.

    Article  CAS  Google Scholar 

  29. He W, Wang K, Zhu Z, Zou H, Zhou K, Hu Z, Duan Y, Feng Y, Gan L, Lv K, Wang C, Han X, Zhou X. Ultra-small subnano TiOx clusters as excellent cocatalysts for the photocatalytic degradation of tetracycline on plasmonic Ag/AgCl. Catal Sci Technol. 2020;10(1):147.

    Article  CAS  Google Scholar 

  30. Liu Q, Zeng C, Ai L, Hao Z, Jiang J. Boosting visible light photoreactivity of photoactive metal-organic framework: dsigned plasmonic Z-scheme Ag/AgCl@MIL-53-Fe. Appl. Catal. B-Environ. 2018;224:38.

    Article  CAS  Google Scholar 

  31. Oku M, Wagatsuma K, Kohiki S. Ti 2p and Ti 3p X-ray photoelectron spectra for TiO2, SrTiO3 and BaTiO3. Phys Chem Chem Phys. 1999;1(23):5327.

    Article  CAS  Google Scholar 

  32. Nasr C, Vinodgopal K, Fisher L, Hotchandani S, Chattopadhyay AK, Kamat PV. Environmental photochemistry on semiconductor surfaces. Visible light induced degradation of a textile diazo dye, naphthol blue black, on TiO2 nanoparticles. J Phys Chem. 1996;100(20):8436.

    Article  CAS  Google Scholar 

  33. Vinodgopal K, Wynkoop D. Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environ Sci Technol. 1996;30(5):1660.

    Article  CAS  Google Scholar 

  34. Yan X, Ohno T, Nishijima K, Abe R, Ohtani B. Is methylene blue an appropriate substrate for a photocatalytic activity test? a study with visible-light responsive titania. Chem Phys Lett. 2006;429(4):606.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJQN201800113), the Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxmX0554), and the National Natural Science Foundation of China (No. 11904039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Ning Xia or Xiao-Yuan Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., He, WL., Zhang, X. et al. Photocatalytic and photochemical processes of AgCl/TiO2 studied with a fully integrated X-ray photoelectron spectrometer. Rare Met. 40, 799–807 (2021). https://doi.org/10.1007/s12598-020-01635-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01635-7

Keywords

Navigation