Skip to main content
Log in

Enhanced formaldehyde sensitivity of two-dimensional mesoporous SnO2 by nitrogen-doped graphene quantum dots

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Formaldehyde (HCHO) is widely known as an indoor air pollutant, and the monitoring of the gas has significant importance. However, most HCHO sensing materials do not have low detection limits and operate at high temperatures. Herein, two-dimensional (2D) mesoporous ultrathin SnO2 modified with nitrogen-doped graphene quantum dots (N-GQDs) was synthesized. The N-GQDs/SnO2 nanocomposite demonstrated high efficiency for HCHO detection. With the addition of 1.00 wt% N-GQDs, the response (Ra/Rg) of SnO2 gas sensor increased from 120 to 361 at 60 °C for the detection of 10 × 10−6 HCHO. In addition, the corresponding detection limit was as low as 10 × 10−9. Moreover, the sensor exhibited excellent selectivity and stability for the detection of HCHO. The enhanced sensing performance was attributed to both the large specific surface area of SnO2 and electron regulation of N-GQDs. Therefore, this study presents a novel HCHO sensor, and it expands the research and application potential of GQDs nanocomposites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chung PR, Tzeng CT, Ke MT, Lee CY. Formaldehyde gas sensors: a review. Sensors. 2013;13(4):4468.

    CAS  Google Scholar 

  2. Zheng YG, Wang J, Yao PJ. Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sens Actuators B Chem. 2011;156(2):723.

    CAS  Google Scholar 

  3. Fang F, Bai L, Sun HY, Kuang Y, Sun XM, Shi T, Song DS, Guo P, Yang HP, Zhang ZF, Wang Y, Luo J, Zhu J. Hierarchically porous indium oxide nanolamellas with ten-parts-per-billion-level formaldehyde-sensing performance. Sens Actuators B Chem. 2015;206(9):714.

    CAS  Google Scholar 

  4. Yoosefian M, Raissi H, Mola A. The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: a DFT study. Sens Actuators B Chem. 2015;212(2):55.

    CAS  Google Scholar 

  5. Zhang Y, Zhang M, Cai ZQ, Chen MQ, Cheng FL. A novel electrochemical sensor for formaldehyde based on palladium nanowire arrays electrode in alkaline media. Electrochim Acta. 2012;68(2):172.

    CAS  Google Scholar 

  6. Ding P, Xu DS, Dong N, Chen Y, Xu PC, Zheng D, Li XX. A high-sensitivity H2S gas sensor based on optimized ZnO-ZnS nano-heterojunction sensing material. Chin Chem Lett. 2020;31(8):2050.

    CAS  Google Scholar 

  7. Su C, Zhang L, Han YT, Ren C, Chen XW, Hu J, Zeng M, Hu NT, Su YJ, Zhou ZH, Yang Z. Controllable synthesis of crescent-shaped porous NiO nanoplates for conductometric ethanol gas sensors. Sens Actuators B Chem. 2019;296:126642.

    CAS  Google Scholar 

  8. Su C, Zhang L, Han YT, Chen XW, Wang ST, Zeng M, Hu NT, Su YJ, Zhou ZH, Wei H, Yang Z. Glucose-assisted synthesis of hierarchical flower-like Co3O4 nanostructures assembled by porous nanosheets for enhanced acetone sensing. Sens Actuators B Chem. 2019;288(3):699.

    CAS  Google Scholar 

  9. Yuan ZY, Han EC, Meng FL, Zuo KY. Detection and identification of volatile organic compounds based on temperature-modulated ZnO sensors. IEEE Trans Instrum Meas. 2020;69(7):4533.

    CAS  Google Scholar 

  10. Huang XY, Chi ZT, Liu J, Li DH, Sun XJ, Yan C, Wang YC, Li H, Wang XD, Xie WF. Enhanced gas sensing performance based on p-NiS/n-In2O3 heterojunction nanocomposites. Sens Actuators B Chem. 2020;304:127305.

    CAS  Google Scholar 

  11. Zhou TT, Zhang T, Zhang R, Lou Z, Deng JN, Wang LL. Hollow ZnSnO3 cubes with controllable shells enabling highly efficient chemical sensing detection of formaldehyde vapors. ACS Appl Mater Interfaces. 2017;9(16):14525.

    CAS  Google Scholar 

  12. Wang D, Tian L, Li HJ, Wan KC, Yu X, Wang P, Chen AY, Wang XY, Yang JH. Mesoporous ultrathin SnO2 nanosheets in situ modified by graphene oxide for extraordinary formaldehyde detection at low temperature. ACS Appl Mater Interfaces. 2019;11(13):12808.

    CAS  Google Scholar 

  13. Wang D, Huang SM, Li HJ, Chen AY, Wang P, Yang J, Wang XY, Yang JH. Ultrathin WO3 nanosheets modified by g-C3N4 for highly efficient acetone vapor detection. Sens Actuators B Chem. 2019;282(11):961.

    CAS  Google Scholar 

  14. Meng D, Liu DY, Wang GS, Shen YB, San XG, Li M, Meng FL. Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets. Sens Actuators B Chem. 2018;273(6):418.

    CAS  Google Scholar 

  15. Han YT, Ma YJ, Liu Y, Xu SS, Chen XW, Zeng M, Hu NT, Su YJ, Zhou ZH, Yang Z. Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature. Appl Surf Sci. 2019;493(7):613.

    CAS  Google Scholar 

  16. Bian H, Zhang XJ, Huang DX, Zhang N. Selective modification of two-dimensional MoS2 nanosheets by polymer grafting. Chin Chem Lett. 2019;30(2):311.

    CAS  Google Scholar 

  17. Pan QN, Yang ZM, Wang WW, Zhang DZ. Sulfur dioxide gas sensing at room temperature based on tin selenium/tin dioxide hybrid prepared via hydrothermal and surface oxidation treatment. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01575-2.

    Article  Google Scholar 

  18. Wang D, Zhang ML, Chen ZL, Li HJ, Chen AY, Wang XY, Yang JH. Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide. Sens Actuators B Chem. 2017;250(4):533.

    CAS  Google Scholar 

  19. Zhang YM, Zhao JH, Sun HL, Zhu ZQ, Zhang J, Liu QJ. B, N, S, Cl doped graphene quantum dots and their effects on gas-sensing properties of Ag-LaFeO3. Sens Actuators B Chem. 2018;266(3):364.

    CAS  Google Scholar 

  20. Rong XR, Chen DL, Qu GP, Li T, Zhang R, Sun J. Effects of graphene on the microstructures of SnO2@rGO nanocomposites and their formaldehyde-sensing performance. Sens Actuators B Chem. 2018;269(4):223.

    CAS  Google Scholar 

  21. Teng ZW, Wang BT, Hu YY, Xu DQ. Light-responsive nanocomposites combining graphene oxide with POSS based on host-guest chemistry. Chin Chem Lett. 2019;30(3):717.

    CAS  Google Scholar 

  22. Liu W, Zhou XY, Xu L, Zhu SD, Yang S, Chen XF, Dong B, Bai X, Lu GY, Song HW. Graphene quantum dot-functionalized three-dimensional ordered mesoporous ZnO for acetone detection toward diagnosis of diabetes. Nanoscale. 2019;11(24):11496.

    CAS  Google Scholar 

  23. Zhang YM, Rong Q, Zhao JH, Zhang J, Zhu ZQ, Liu QJ. Boron-doped graphene quantum dot/Ag–LaFeO3 p–p heterojunctions for sensitive and selective benzene detection. J Mater Chem A. 2018;6(26):12647.

    CAS  Google Scholar 

  24. Li HJ, Sun X, Xue FF, Ou NQ, Sun BW, Qian DJ, Chen M, Wang D, Yang JH, Wang XY. Redox induced fluorescence on–off switching based on nitrogen enriched graphene quantum dots for formaldehyde detection and bioimaging. ACS Sustain Chem Eng. 2018;6(2):1708.

    CAS  Google Scholar 

  25. Safarpour M, Khataee A, Vatanpour V. Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Sep Purif Technol. 2015;140(11):32.

    CAS  Google Scholar 

  26. Wang D, Wan KC, Zhang ML, Li HJ, Wang P, Wang XY, Yang JH. Constructing hierarchical SnO2 nanofiber/nanosheets for efficient formaldehyde detection. Sens Actuators B Chem. 2019;283(11):714.

    CAS  Google Scholar 

  27. Wang L, Wang YL, Xu T, Liao HB, Yao CJ, Liu Y, Li Z, Chen ZW, Pan DY, Sun LT, Wu MH. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun. 2014;5:5357.

    CAS  Google Scholar 

  28. Qu D, Zheng M, Du P, Zhou Y, Zhang LG, Li D, Tan HQ, Zhao Z, Xie ZG, Sun ZC. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale. 2013;5(24):12272.

    CAS  Google Scholar 

  29. Liu Y, Jiao Y, Zhang ZL, Qu FY, Umar A, Wu X. Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl Mater Interfaces. 2014;6(3):2174.

    CAS  Google Scholar 

  30. Dieguez A, Romano-Rodrıguez A, Vila A, Morante JR. The complete Raman spectrum of nanometric SnO2 particles. J Appl Phys. 2001;90(3):1550.

    CAS  Google Scholar 

  31. Sun X, Li HJ, Ou NQ, Lyu B, Gui BJ, Tian SW, Qian DJ, Wang XY, Yang JH. Visible-light driven TiO2 photocatalyst coated with graphene quantum dots of tunable nitrogen doping. Molecules. 2019;24(2):344.

    Google Scholar 

  32. Gu CP, Cui YW, Wang LY, Sheng EH, Shim JJ, Huang JR. Synthesis of the porous NiO/SnO2 microspheres and microcubes and their enhanced formaldehyde gas sensing performance. Sens Actuators B Chem. 2017;241(10):298.

    CAS  Google Scholar 

  33. Wan KC, Wang D, Wang F, Li HJ, Xu JC, Wang XY, Yang JH. Hierarchical In2O3@SnO2 core-shell nanofiber for high efficiency formaldehyde detection. ACS Appl Mater Interfaces. 2019;11(48):45214.

    CAS  Google Scholar 

  34. Hu J, Wang T, Wang YJ, Huang D, He GL, Han YT, Hu NT, Su YJ, Zhou ZH, Zhang YF, Yang Z. Enhanced formaldehyde detection based on Ni doping of SnO2 nanoparticles by one-step synthesis. Sens Actuators B Chem. 2018;263(2):120.

    CAS  Google Scholar 

  35. Li GJ, Cheng ZX, Xiang Q, Yan LM, Wang XH, Xu JQ. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens Actuators B Chem. 2019;283(9):590.

    CAS  Google Scholar 

  36. Zhu KM, Ma SY. Preparations of Bi-doped SnO2 hierarchical flower-shaped nanostructures with highly sensitive HCHO sensing properties. Mater Lett. 2019;236(10):491.

    CAS  Google Scholar 

  37. Wei Q, Song P, Li ZQ, Yang ZX, Wang Q. Hierarchical peony-like Sb-doped SnO2 nanostructures: synthesis, characterization and HCHO sensing properties. Mater Lett. 2016;191(15):173.

    Google Scholar 

  38. Shu SM, Wang MX, Yang W, Liu ST. Synthesis of surface layered hierarchical octahedral-like structured Zn2SnO4/SnO2 with excellent sensing properties toward HCHO. Sens Actuators B Chem. 2017;243(12):1171.

    CAS  Google Scholar 

  39. Li Y, Lu YL, Wu KD, Zhang DZ, Debliquy M, Zhang C. Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01557-4.

    Article  Google Scholar 

  40. Zhou TT, Liu XP, Zhang R, Wang LL, Zhang T. Constructing hierarchical heterostructured Mn3O4/Zn2SnO4 materials for efficient gas sensing reaction. Adv Mater Interfaces. 2018;5(11):1800115.

    Google Scholar 

  41. Zou YH, Chen S, Sun J, Liu JQ, Che YK, Liu XH, Zhang J, Yang DJ. Highly efficient gas sensor using a hollow SnO2 microfiber for triethylamine detection. ACS Sens. 2017;2(7):897.

    CAS  Google Scholar 

  42. Li Y, Zhao Y, Cheng HH, Hu Y, Shi GQ, Dai LM, Qu LT. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc. 2012;134(1):15.

    CAS  Google Scholar 

  43. Wang LL, Chen S, Li W, Wang K, Lou Z, Shen GZ. Grain-boundary-induced drastic sensing performance enhancement of polycrystalline-microwire printed gas sensors. Adv Mater. 2018;31(4):1804583.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 62071300 and 51702212), the Science and Technology Commission of Shanghai Municipality (Nos. 18511110600, 19ZR1435200, and 20490761100), the Innovation Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-07-E00015), the Program of Shanghai Academic/Technology Research Leader (No. 19XD1422900), the Chenguang Scholar Project of Shanghai Education Commission (No. 19CG52) and Cross-Program of Medical & Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZL., Wang, D., Wang, XY. et al. Enhanced formaldehyde sensitivity of two-dimensional mesoporous SnO2 by nitrogen-doped graphene quantum dots. Rare Met. 40, 1561–1570 (2021). https://doi.org/10.1007/s12598-020-01636-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01636-6

Keywords

Navigation