Skip to main content

Advertisement

Log in

Hot tensile deformation behavior and constitutive model of ZK61M high-strength magnesium alloy sheet

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hot deformation behavior of the annealed ZK61M magnesium alloy sheet was explored using tensile tests with strain rates varying from 0.001 to 0.030 s−1 in temperatures range of 423–513 K. The obtained results indicate that the flow stress increased with deformation temperature decreasing and strain rate increasing. Dynamic recrystallization (DRX) occurs when the temperature is higher than 423 K, and the recrystallization volume fraction increases with temperature rising. At a given temperature, the measured DRX volume fraction at a higher strain rate is smaller than that at a lower strain rate. Dimples are observed throughout the tested temperature range. Moreover, they grow larger as temperature increases. An average absolute relative error (AARE) of 2.65% proves that the peak stress predicted by the constitutive model is in good agreement with the experimental results. The correlation coefficient (R’) obtained for the predicted stress and the experimental value considering the strain on the material constant are between 0.9831 and 0.9977. In addition, AARE and root mean square error (RMSE) are less than 6.5% and 8.5 MPa, respectively. This indicates that the deviation of the predicted value from the experimental value is small and the predictions of the proposed model are reliable.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen XJ, Liu WC, Wu GH, Nodooshan HRJ, Zhang XF, Zhang S, Zhou KH, Ding WJ. Influence of cryogenic treatment on room and low temperature tensile behavior of as-cast Mg–10Gd–3Y–0.5Zr magnesium alloy. J Mater Res. 2016;31(4):419.

    Article  Google Scholar 

  2. Moradnezhad S, Razaghian A, Taghiabadi R, Abedi HR, Salandari-Rabori A, Emamy M. Effect of Ca additions on evolved microstructures and subsequent mechanical properties of a cast and hot-extruded Mg–Zn–Zr magnesium alloy. Int J Adv Manuf Tech. 2019;104(9–12):4265.

    Article  Google Scholar 

  3. Li D, Xue HS, Yang G, Zhang DF. Microstructure and mechanical properties of Mg–6Zn–0.5Y magnesium alloy prepared with ultrasonic treatment. Rare Met. 2017;36(8):622.

    Article  CAS  Google Scholar 

  4. Zengin H, Turen Y, Ahlatci H, Sun Y. Mechanical properties and corrosion behavior of as-cast Mg–Zn–Zr–(La) magnesium alloys. J Mater Eng Perform. 2018;27(2):389.

    Article  CAS  Google Scholar 

  5. Yu ZP, Yan YH, Yao J, Wang C, Zha M, Xu XY, Liu Y, Wang HY, Jiang QC. Effect of tensile direction on mechanical properties and microstructural evolutions of rolled Mg–Al–Zn–Sn magnesium alloy sheets at room and elevated temperatures. J Alloy Compd. 2018;744:211.

    Article  CAS  Google Scholar 

  6. Luo XC, Zhang DT, Zhang WW, Qiu C, Chen DL. Tensile properties of AZ61 magnesium alloy produced by multi-pass friction stir processing: effect of specimen orientation. Mater Sci Eng, A. 2018;725:398.

    Article  CAS  Google Scholar 

  7. Zhou J, Nodooshan HRJ, Li DJ, Zeng XQ, Ding WJ. Microstructure and tensile properties of the Mg–6Zn–4Al–xSn die cast magnesium alloy. Met. 2019;9(2):1.

    Article  Google Scholar 

  8. Zhang K, Li XG, Li YJ, Yuan JW, Liu XD, Wang SQ. Properties of ZM51 magnesium alloys with heat treatments. Chin J Rare Met. 2019;43(6):585.

    Google Scholar 

  9. Ang HQ, Abbott TB, Zhu SM, Easton MA. An analysis of the tensile deformation behavior of commercial die-cast magnesium-aluminum-based alloys. Metall Mater Trans A. 2019;50A(8):3827.

    Article  Google Scholar 

  10. Wang HY, Rong J, Yu ZY, Zha M, Wang C, Yang ZZ, Bu RY, Jiang QC. Tensile properties, texture evolutions and deformation anisotropy of as-extruded Mg–6Zn–1Zr magnesium alloy at room and elevated temperatures. Mater Sci Eng, A. 2017;697:149.

    Article  CAS  Google Scholar 

  11. Zhang LX, Chen WZ, Zhang WC, Wang WK, Wang ED. Microstructure and mechanical properties of thin ZK61 magnesium alloy sheets by extrusion and multi–pass rolling with lowered temperature. J Mater Process Tech. 2016;237:65.

    Article  CAS  Google Scholar 

  12. Chen JX, Gao M, Tan LL, Yang K. Microstructure, mechanical and biodegradable properties of a Mg–2Zn–1Gd–0.5Zr alloy with different solution treatments. Rare Met. 2019;38(6):532.

  13. Zheng RX, Bhattacharjee T, Gao S, Gong W, Shibata A, Sasaki T, Hono K, Tsuji N. Change of deformation mechanisms leading to high strength and large ductility in Mg–Zn–Zr–Ca alloy with fully recrystallized ultrafine grained microstructures. Sci Rep. 2019;9(1):1.

    Google Scholar 

  14. Abdul M, Wang YW, Cheng HW, Khan MA, Nazeer F, An R, Bao JW, Wang MJ. Fracture behavior of twin induced ultra-fine grained ZK61 magnesium alloy under high strain rate compression. J Mater Res Technol. 2019;8(4):3475.

    Article  Google Scholar 

  15. Githens A, Ganesan S, Chen Z, Allison J, Sundararaghavan V, Daly S. Characterizing microscale deformation mechanisms and macroscopic tensile properties of a high strength magnesium rare-earth alloy: a combined experimental and crystal plasticity approach. Acta Mater. 2020;186(C):77.

  16. Li ZG, Yang HF, Liu JG. Comparative study on yield behavior and non-associated yield criteria of AZ31B and ZK61M magnesium alloys. Mater Sci Eng, A. 2019;759:329.

    Article  CAS  Google Scholar 

  17. Chen WZ, Ma LM, Chen XM, Cui GR, Zhang WC, Wang ED. Microstructure evolution and mechanical performance improvement of thin ZK61 magnesium alloy sheets subjected to cumulative cold rolling and intermediate annealing. Mater Sci Eng, A. 2018;733:350.

    Article  CAS  Google Scholar 

  18. Zhou XP, Yan HG, Chen JH, Xia WJ, Su B, Yu L, Huang WS, Song M. Effects of low temperature aging precipitates on damping and mechanical properties of ZK60 magnesium alloy. J Alloy Compd. 2020;819:1.

    Google Scholar 

  19. Zhang LX, Zhang WC, Chen WZ, Duan JP, Wang WK, Wang ED. The effect of grain size on the strain hardening behavior for extruded ZK61 magnesium alloy. J Mater Eng Perform. 2017;26(12):6013.

    Article  CAS  Google Scholar 

  20. Malik A, Wang YW, Chang HW, Nazeer F, Ahmed B, Khan MA, Wang MJ. Constitutive analysis, twinning, recrystallization, and crack in fine-grained ZK61 Mg alloy during high strain rate compression over a wide range of temperatures. Mater Sci Eng, A. 2020;771:1.

    Article  Google Scholar 

  21. Hadadzadeh A, Wells MA. Analysis of the hot deformation of ZK60 magnesium alloy. J Magnes Alloy. 2017;5(4):369.

    Article  CAS  Google Scholar 

  22. Chen BD, Guo F, Wen J, Ma W, Cai HS, Liu L. Constitutive model of hot plastic deformation and flow behavior prediction of Mg–Zn–Zr–Y alloy. Rare Metal Mat Eng. 2017;46(11):3305.

    CAS  Google Scholar 

  23. Zhao L, Ma GJ, Jin PP, Yu ZH. Role of Y on the microstructure, texture and mechanical properties of Mg–Zn–Zr alloys by powder metallurgy. J Alloy Compd. 2019;810:1.

    Article  Google Scholar 

  24. Huang ZH, Qi WJ, Xu J. Effects of Gd on microstructure and mechanical property of ZK60 magnesium alloy. Trans Nonferrous Met Soc. 2013;23(09):2568.

    Article  CAS  Google Scholar 

  25. Fan HD, Wang QY, Tian XB, El-Awady JA. Temperature effects on the mobility of pyramidal < c plus a > dislocations in magnesium. Scripta Mater. 2017;127:68.

    Article  CAS  Google Scholar 

  26. Zhu SZ, Luo TJ, Zhang TA, Yang YS. Hot deformation behavior and processing maps of as-cast Mg–8Zn–1Al–0.5Cu–0.5Mn alloy. Trans Nonferrous Met Soc. 2015;25(10):3232.

    Article  CAS  Google Scholar 

  27. Li L, Wang Y, Li H, Jiang W, Wang T, Zhang CC, Wang F, Garmestani H. Effect of the Zener-Hollomon parameter on the dynamic recrystallization kinetics of Mg–Zn–Zr–Yb magnesium alloy. Comp Mater Sci. 2019;166:221.

    Article  CAS  Google Scholar 

  28. Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. J Appl Phys. 1944;15(1):22.

    Article  Google Scholar 

  29. Zhou F, Wang KL, Lu SQ, Ren SJ, Chen XH, Wan P. High temperature constitutive model of rare earth Ti2AlNb based alloy based on strain compensation. Chin J Rare Met. 2019;43(3):239.

    Google Scholar 

  30. Shi XN, Liu YY, Ning YQ, Zhang JY, Wang MT. Physically-based constitutive model of nickel-based superalloy ATI 718Plus. Chin J Rare Met. 2019;43(6):613.

    Google Scholar 

  31. Kang FW, Zhou J, Wang ZW, Zhang XM, Feng YC, Guo EJ. Constitutive equation and hot processing maps of Al–5Ti–1B master alloy. Rare Met. 2018;37(8):668.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51275444), the Natural Science Foundation of Hebei Province (No. E2018203254), and the Innovative Research Assistant Project for Graduate Students of Yanshan University (No. CXZS202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Ping Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Duan, YC., Guan, YP. et al. Hot tensile deformation behavior and constitutive model of ZK61M high-strength magnesium alloy sheet. Rare Met. 40, 1182–1190 (2021). https://doi.org/10.1007/s12598-020-01650-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01650-8

Keywords

Navigation