Skip to main content

Advertisement

Log in

A novel three-step approach to separate cathode components for lithium-ion battery recycling

  • Communication
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) represent efficient energy storage technology that can help to alleviate fossil fuel-based CO2 emissions. Presently, LIBs are being applied extensively in consumer electronics and electric vehicles, but because of limited resources, there is an urgent need for spent LIB recycling technologies. The complexity of LIBs, especially the electrode part, makes it difficult to achieve precision separations for each single component from the used electrode with low emissions. Herein, we propose a three-step treatment for the separation of cathode components. In detail, detaching of the current collector from the cathode is accomplished by the solvent method, which was found to be an ideal strategy compared with previous reports. Then, a thermal treatment is used to remove the polymer binder in the second step because we demonstrated that it is challenging to separate polyvinylidene fluoride (PVDF) from other cathode components by dissolution with N-methylpyrrolidone. The separation efficiency between the active material and conductive carbon by the polymer solution in the third step showed reasonably good results. We anticipate this work will serve as an important reference for the separation of each single electrode component in both laboratory- and industrial-scale applications. Separation of binder and development of novel binders, which can be easily recycled for sustainable LIBs, are fruitful areas for further research.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4(9):3243.

    Article  CAS  Google Scholar 

  2. Kang Y, Liang Z, Zhao Y, Xu H, Qian K, He X, Li T, Li J. Large-scale synthesis of lithium-and manganese-rich materials with uniform thin-film Al2O3 coating for stable cathode cycling. Sci China Mater. 2020;63(9):1683.

    Article  CAS  Google Scholar 

  3. Chen X, Li H, Yan Z, Cheng F, Chen J. Structure design and mechanism analysis of silicon anode for lithium ion batteries. Sci China Mater. 2019;62(11):1515.

    Article  CAS  Google Scholar 

  4. Wei WQ, Liu BQ, Gan YQ, Ma HJ, Cui DW. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01501-6.

    Article  Google Scholar 

  5. Li X, Qi SH, Zhang WC, Feng YZ, Ma JM. Recent progress on FeS2 as anodes for metal-ion batteries. Rare Met. 2020;39(11):1239.

    Article  CAS  Google Scholar 

  6. Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev. 2020;120(14):7020.

    Article  CAS  Google Scholar 

  7. Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles. Nature. 2019;575(7781):75.

    Article  CAS  Google Scholar 

  8. Jiang C, Xiang L, Miao S, Shi L, Xie D, Yan J, Zheng Z, Zhang X, Tang Y. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv Mater. 2020;32(17):1908470.

    Article  CAS  Google Scholar 

  9. Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Park HS, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995.

    Article  CAS  Google Scholar 

  10. Yi AF, Zhu ZW, Liu YH, Zhang J, Su H, Qi T. Using highly concentrated chloride solutions to leach valuable metals from cathode-active materials in spent lithium-ion batteries. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01503-4.

    Article  Google Scholar 

  11. Tran M, Rodrigues M-T, Kato K, Babu G, Ajayan P. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat Energy. 2019;4(4):339.

    Article  CAS  Google Scholar 

  12. Song D, Wang X, Zhou E, Hou P, Guo F, Zhang L. Recovery and heat treatment of the Li(Ni1/3Co1/3Mn1/3)O2 cathode scrap material for lithium ion battery. J Power Sources. 2013;232:348.

    Article  CAS  Google Scholar 

  13. Cai G, Fung K, Ng K. Process development for the recycle of spent lithium ion batteries by chemical precipitation. Ind Eng Chem Res. 2014;53(47):18245.

    Article  CAS  Google Scholar 

  14. Song D, Wang X, Nie H, Shi H, Wang D, Guo F, Shi X, Zhang L. Heat treatment of LiCoO2 recovered from cathode scraps with solvent method. J Power Sources. 2014;249:137.

    Article  CAS  Google Scholar 

  15. Bertuol D, Toniasso C, Jimenez B, Meili L, Dotto G, Tanabe E, Aguiar M. Application of spouted bed elutriation in the recycling of lithium ion batteries. J Power Sources. 2015;275:627.

    Article  CAS  Google Scholar 

  16. Zhang X, Xue Q, Li L, Fan E, Wu F, Chen R. Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries. ACS Sustain Chem Eng. 2016;4(12):7041.

    Article  CAS  Google Scholar 

  17. Hu J, Zhang J, Li H, Chen Y, Wang C. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J Power Sources. 2017;351:192.

    Article  CAS  Google Scholar 

  18. Pagnanelli F, Moscardini E, Altimari P, Atia T, Toro L. Leaching of electrodic powders from lithium ion batteries: optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval. Waste Manag. 2017;60:706.

    Article  CAS  Google Scholar 

  19. Wang S, Zhang Z, Lu Z, Xu Z. A novel method for screening deep eutectic solvent to recycle cathode of Li-ion batteries. Green Chem. 2020. https://doi.org/10.1039/D0GC00701C.

    Article  Google Scholar 

  20. Song X, Hu T, Liang C, Long H, Zhou L, Song W, You L, Wu Z, Liu J. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC Adv. 2017;7(8):4783.

    Article  CAS  Google Scholar 

  21. Xiao J, Li J, Xu Z. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. J Hazard Mater. 2017;338:124.

    Article  CAS  Google Scholar 

  22. Yua J, He Y, Ge Z, Li H, Xie W, Wang S. A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: grinding flotation. Sep Purif Technol. 2018;190:45.

    Article  Google Scholar 

  23. He LP, Sun SY, Song XF, Yu JG. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Manag. 2015;46:523.

    Article  CAS  Google Scholar 

  24. Wang M, Tan Q, Liu L, Li J. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt. ACS Sustain Chem Eng. 2019;7(9):8287.

    Article  CAS  Google Scholar 

  25. He Y, Zhang T, Wang F, Zhang G, Zhang W, Wang J. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation. J Clean Prod. 2017;143:319.

    Article  CAS  Google Scholar 

  26. Li L, Zhai L, Zhang X, Lu J, Chen R, Wu F, Amine K. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J Power Sources. 2014;262:380.

    Article  CAS  Google Scholar 

  27. Li L, Qu W, Zhang X, Lu J, Chen R, Wu F, Amine K. Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries. J Power Sources. 2015;282:544.

    Article  CAS  Google Scholar 

  28. Zhang X, Bian Y, Xu S, Fan E, Xue Q, Guan Y, Wu F, Li L, Chen R. Innovative application of acid leaching to regenerate Li(Ni1/3Co1/3Mn1/3)O2 cathodes from spent lithium-ion batteries. ACS Sustain Chem Eng. 2018;6(5):5959.

    Article  CAS  Google Scholar 

  29. Nie H, Xu L, Song D, Song J, Shi X, Wang X, Zhang L, Yuan Z. LiCoO2: recycling from spent batteries and regeneration with solid state synthesis. Green Chem. 2015;17(2):1276.

    Article  CAS  Google Scholar 

  30. Wang W, Han Y, Zhang T, Zhang L, Xu S. Alkali metal salt catalyzed carbothermic reduction for sustainable recovery of LiCoO2: accurately controlled reduction and efficient water leaching. ACS Sustain Chem Eng. 2019;7(19):16729.

    Article  CAS  Google Scholar 

  31. Chen H, Ling M, Hencz L, Ling H, Li G, Lin Z, Zhang S. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev. 2018;118(18):8936.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Basic Research Program of China (No. 2014CB932400), the Joint Fund of the National Natural Science Foundation of China (No. U1401243), the National Natural Science Foundation of China (No. 51232005), Shenzhen Technical Plan Project (Nos. JCYJ20150529164918735, CYJ20170412170911187 and KQJSCX20160226191136), and Guangdong Technical Plan Project (No. 2015TX01N011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Li, Zheng Liang or Bao-Hua Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Fang, LZ., Kang, YQ. et al. A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Met. 40, 1431–1436 (2021). https://doi.org/10.1007/s12598-020-01587-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01587-y

Keywords

Navigation