Skip to main content
Log in

Recent advance in single-atom catalysis

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Single-atom catalysts (SACs) have obtained a great deal of attention in many catalytic fields due to the high atom utilization efficiency and high catalytic activity. Recently, great achievements on SACs have been made for thermocatalysis, electrocatalysis, and photocatalysis which play an important role in obtaining value-added products. However, it remains a great challenge to fabricate SACs with high metal loading and investigate their reaction mechanisms. Therefore, it is necessary to highlight the recent development of SACs in these fields to guide future research. In this review, we overviewed the thermocatalysis applications of SACs in CO oxidation, preferential oxidation of CO, water-gas shift reaction, methane conversion, methanol steam reforming, aqueous-phase reforming of methanol, hydrogenation of alkynes and dienes, hydrogenation of CO, and hydrogenation of substituted nitroarenes. Moreover, the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), oxygen evolution reaction (OER), CO2 reduction reaction (CO2RR), and N2 reduction reaction (N2RR) for photocatalytic and electrocatalytic fields were also overviewed. Lastly, the opportunities and challenges of SACs were pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wang QC, Lei YP, Wang DS, Li YD. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ Sci. 2019;12(6):1730.

    CAS  Google Scholar 

  2. Li F, Han GF, Noh HJ, Kim SJ, Lu Y, Jeong HY, Fu Z, Baek JB. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ Sci. 2018;11(8):2263.

    CAS  Google Scholar 

  3. Yang Y, Wu M, Zhu X, Xu H, Ma S, Zhi Y, Xia H, Liu X, Pan J, Tang JY, Chai SP, Palmisano L, Parrino F, Liu J, Ma J, Wang ZL, Tan L, Zhao YF, Song YF, Singh P, Raizada P, Jiang D, Li D, Geioushy RA, Ma J, Zhang J, Hu S, Feng R, Liu G, Liu M, Li Z, Shao M, Li N, Peng J, Ong WJ, Kornienko N, Xing Z, Fan X, Ma J. 2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chin Chem Lett. 2019;30(12):2065.

    CAS  Google Scholar 

  4. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981.

    CAS  Google Scholar 

  5. Yang Y, Tang Y, Jiang H, Chen Y, Wan P, Fan M, Zhang R, Ullah S, Pan L, Zou JJ, Lao M, Sun W, Yang C, Zheng G, Peng Q, Wang T, Luo Y, Sun X, Konev AS, Levin OV, Lianos P, Zhuofeng H, Shen Z, Zhao Q, Wang Y, Todorova N, Trapalis C, Sheridan MV, Wang H, Zhang L, Sun S, Wang W, Ma J. 2020 Roadmap on gas-involved photo-and electro-catalysis. Chin Chem Lett. 2019;30(12):2089.

    CAS  Google Scholar 

  6. Chen YZ, Li WH, Li L, Wang LN. Progress in organic photocatalysts. Rare Met. 2018;37(1):1.

    CAS  Google Scholar 

  7. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011;3(8):634.

    CAS  Google Scholar 

  8. Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland AI, Duan X, Huang Y. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat Catal. 2018;1(1):63.

    CAS  Google Scholar 

  9. Liu J, Wei Z, Dou Y, Feng Y, Ma J. Ru-doped phosphorene for electrochemical ammonia synthesis. Rare Met. 2020;39(8):874.

    CAS  Google Scholar 

  10. Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule. 2018;2(7):1242.

    CAS  Google Scholar 

  11. Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier DM, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science. 2016;352(6287):797.

    CAS  Google Scholar 

  12. Liu W, Zhang L, Yan W, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T. Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem Sci. 2016;7(9):5758.

    CAS  Google Scholar 

  13. Li J, Chen S, Yang N, Deng M, Ibraheem S, Deng J, Li J, Li L, Wei Z. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew Chem Int Ed. 2019;58(21):7035.

    CAS  Google Scholar 

  14. Babucci M, Oztuna FES, Debefve LM, Boubnov A, Bare SR, Gates BC, Unal U, Uzun A. Atomically dispersed reduced graphene aerogel-supported iridium catalyst with an iridium loading of 14.8 wt%. ACS Catal. 2019;9(11):9905.

    CAS  Google Scholar 

  15. Cheng Y, Zhao S, Johannessen B, Veder JP, Saunders M, Rowles MR, Cheng M, Liu C, Chisholm MF, Marco R, Cheng HM, Yang SZ, Jiang SP. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv Mater. 2018;30(13):1706287.

    Google Scholar 

  16. Royer S, Duprez D. Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem. 2011;3(1):24.

    CAS  Google Scholar 

  17. Li L, Wang A, Qiao B, Lin J, Huang Y, Wang X, Zhang T. Origin of the high activity of Au/FeOx for low-temperature CO oxidation: direct evidence for a redox mechanism. J Catal. 2013;299:90.

    CAS  Google Scholar 

  18. Therrien AJ, Hensley AJR, Marcinkowski MD, Zhang R, Lucci FR, Coughlin B, Schilling AC, McEwen JS, Sykes ECH. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat Catal. 2018;1(3):192.

    CAS  Google Scholar 

  19. Wang C, Gu XK, Yan H, Lin Y, Li J, Liu D, Li WX, Lu J. Water-mediated Mars–van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2016;7(1):887.

    Google Scholar 

  20. Esrafili MD, Heydari S. A promising and new single-atom catalyst for CO oxidation: Si-embedded MoS2 monolayer. J Phys Chem Solids. 2019;135:109123.

    CAS  Google Scholar 

  21. Li F, Li Y, Zeng XC, Chen Z. Exploration of high-performance single-atom catalysts on support M1/FeOx for CO oxidation via computational study. ACS Catal. 2014;5(2):544.

    Google Scholar 

  22. Liang JX, Lin J, Yang XF, Wang AQ, Qiao BT, Liu J, Zhang T, Li J. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J Phys Chem C. 2014;118(38):21945.

    CAS  Google Scholar 

  23. Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez XIP, DeLaRiva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science. 2017;358(6369):1419.

    CAS  Google Scholar 

  24. Lin J, Wang A, Qiao B, Liu X, Yang X, Wang X, Liang J, Li J, Liu J, Zhang T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc. 2013;135(41):15314.

    CAS  Google Scholar 

  25. Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li YW, Shi C, Wen XD, Ma D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature. 2017;544(7648):80.

    CAS  Google Scholar 

  26. Guan H, Lin J, Qiao B, Miao S, Wang A-Q, Wang X, Zhang T. Enhanced performance of Rh1/TiO2 catalyst without methanation in water-gas shift reaction. AIChE J. 2017;63(6):2081.

    CAS  Google Scholar 

  27. Yang M, Allard LF, Flytzani-Stephanopoulos M. Atomically dispersed Au–(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J Am Chem Soc. 2013;135(10):3768.

    CAS  Google Scholar 

  28. Malanichev VE, Malashin MV, Popov VE, Subbotin DI, Surov AV, Khomich VY, Shapovalova OV, Shmelev VM. Thermal stimulation as a prevailing mechanism of methane conversion in barrier discharge. Russ J Phys Chem B. 2019;12(6):992.

    Google Scholar 

  29. Zhao YX, Li ZY, Yuan Z, Li XN, He SG. Thermal methane conversion to formaldehyde promoted by single platinum atoms in PtAl2O4 cluster anions. Angew Chem Int Ed. 2014;53(36):9482.

    CAS  Google Scholar 

  30. Lima da Silva A, Müller IL. Hydrogen production by sorption enhanced steam reforming of oxygenated hydrocarbons (ethanol, glycerol, n-butanol and methanol): thermodynamic modelling. Int J Hydrogen Energy. 2011;36(3):2057.

    CAS  Google Scholar 

  31. Gu XK, Qiao B, Huang CQ, Ding WC, Sun K, Zhan E, Zhang T, Liu J, Li WX. Supported single Pt1/Au1 atoms for methanol steam reforming. ACS Catal. 2014;4(11):3886.

    CAS  Google Scholar 

  32. Pei GX, Liu XY, Wang A, Lee AF, Isaacs MA, Li L, Pan X, Yang X, Wang X, Tai Z, Wilson K, Zhang T. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015;5(6):3717.

    CAS  Google Scholar 

  33. Zhou H, Yang X, Li L, Liu X, Huang Y, Pan X, Wang A, Li J, Zhang T. PdZn intermetallic nanostructure with Pd–Zn–Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016;6(2):1054.

    CAS  Google Scholar 

  34. Krajčı M, Hafner J. The surface of intermetallic B20 compound GaPd as a selective hydrogenation catalyst: a DFT study. J Catal. 2012;295:70.

    Google Scholar 

  35. Vile G, Albani D, Nachtegaal M, Chen Z, Dontsova D, Antonietti M, Lopez N, Perez-Ramirez J. A stable single-site palladium catalyst for hydrogenations. Angew Chem Int Ed. 2015;54(38):11265.

    CAS  Google Scholar 

  36. Krajčí M, Hafner J. Selective semi-hydrogenation of acetylene: atomistic scenario for reactions on the polar threefold surfaces of GaPd. J Catal. 2014;312:232.

    Google Scholar 

  37. Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C, Li J, Wei S, Lu J. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1, 3-butadiene. J Am Chem Soc. 2015;137(33):10484.

    CAS  Google Scholar 

  38. Matsubu JC, Yang VN, Christopher P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J Am Chem Soc. 2015;137(8):3076.

    CAS  Google Scholar 

  39. Kwak JH, Kovarik L, Szanyi J. CO2 reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity. ACS Catal. 2013;3(11):2449.

    CAS  Google Scholar 

  40. Kwak JH, Kovarik L, Szanyi J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal. 2013;3(9):2094.

    CAS  Google Scholar 

  41. Serna P, Concepción P, Corma A. Design of highly active and chemoselective bimetallic gold–platinum hydrogenation catalysts through kinetic and isotopic studies. J Catal. 2009;265:19.

    CAS  Google Scholar 

  42. Prairie MR, Renken A, Highfield JG, Thampi KR, Grätzel M. A fourier transform infrared spectroscopic study of CO2 methanation on supported ruthenium. J Catal. 1991;129:130.

    CAS  Google Scholar 

  43. Liotta LF, Martin GA, Deganello G. The influence of alkali metal ions in the chemisorption of CO and CO2 on supported palladium catalysts: a fourier transform infrared spectroscopic study. J Catal. 1996;164:322.

    CAS  Google Scholar 

  44. Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat Commun. 2014;5(5634):1.

    CAS  Google Scholar 

  45. Liu L, Qiao B, Chen Z, Zhang J, Deng Y. Novel chemoselective hydrogenation of aromatic nitro compounds over ferric hydroxide supported nanocluster gold in the presence of CO and H2O. Chem Commun. 2009;90:653.

    Google Scholar 

  46. Shimizu KI, Miyamoto Y, Kawasaki T, Tanji T, Tai Y, Satsuma A. Chemoselective hydrogenation of nitroaromatics by supported gold catalysts: mechanistic reasons of size-and support-dependent activity and selectivity. J Phys Chem C. 2009;113(41):17803.

    CAS  Google Scholar 

  47. Qiao MF, Wang Y, Li L, Hu GZ, Zou GA, Mamat X, Dong YM, Hu X. Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01345-9.

    Article  Google Scholar 

  48. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J Am Chem Soc. 2014;136(11):4394.

    CAS  Google Scholar 

  49. Huang ZF, Wang J, Peng Y, Jung CY, Fisher A, Wang X. Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv Energy Mater. 2017;7(23):1700544.

    Google Scholar 

  50. Zhang L, Fischer J, Jia Y, Yan X, Xu W, Wang X, Chen J, Yang D, Liu H, Zhuang L, Hankel M, Searles DJ, Huang K, Feng S, Brown CL, Yao X. Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J Am Chem Soc. 2018;140(34):10757.

    CAS  Google Scholar 

  51. Sharma S, Zeng C, Peterson AA. Face-centered tetragonal (FCT) Fe and Co alloys of Pt as catalysts for the oxygen reduction reaction (ORR): a DFT study. J Chem Phys. 2019;150(4):041704.

    Google Scholar 

  52. Guo S, Zhang X, Zhu W, He K, Su D, Mendoza-Garcia A, Ho SF, Lu G, Sun S. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles. J Am Chem Soc. 2014;136(42):15026.

    CAS  Google Scholar 

  53. Puangsombut P, Tantavichet N. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Met. 2019;38(2):95.

    CAS  Google Scholar 

  54. Guo Y, Yuan P, Zhang J, Hu Y, Amiinu IS, Wang X, Zhou J, Xia H, Song Z, Xu Q, Mu S. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn–Air Batteries. ACS Nano. 2018;12(2):1894.

    CAS  Google Scholar 

  55. He Q, Li Q, Khene S, Ren X, López-Suárez FE, Lozano-Castelló D, Bueno-López A, Wu G. High-loading cobalt oxide coupled with nitrogen-doped graphene for oxygen reduction in anion-exchange-membrane alkaline fuel cells. J Phys Chem C. 2013;117(17):8697.

    CAS  Google Scholar 

  56. Sharifi T, Gracia-Espino E, Chen A, Hu G, Wågberg T. Oxygen reduction reactions on single-or few-atom discrete active sites for heterogeneous catalysis. Adv Energy Mater. 2019;10(11):1902084.

    Google Scholar 

  57. Li J, Chen S, Yang N, Deng M, Ibraheem S, Deng J, Li J, Li L, Wei Z. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew Chem Int Ed Engl. 2019;58:7035.

    CAS  Google Scholar 

  58. Wu J, Zhou H, Li Q, Chen M, Wan J, Zhang N, Xiong L, Li S, Xia BY, Feng G, Liu M, Huang L. Densely populated isolated single Co2 N site for efficient oxygen electrocatalysis. Adv Energy Mater. 2019;9:1900149.

    Google Scholar 

  59. Zhao L, Zhang Y, Huang LB, Liu XZ, Zhang QH, He C, Wu ZY, Zhang LJ, Wu J, Yang W, Gu L, Hu JS, Wan LJ. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat Commun. 2019;10(1):1278.

    Google Scholar 

  60. Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed. 2013;52(11):3110.

    CAS  Google Scholar 

  61. Fei H, Dong J, Arellano-Jimenez MJ, Ye G, Dong Kim N, Samuel EL, Peng Z, Zhu Z, Qin F, Bao J, Yacaman MJ, Ajayan PM, Chen D, Tour JM. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun. 2015;6(1):8668.

    CAS  Google Scholar 

  62. Zhu C, Fu S, Shi Q, Du D, Lin Y. Single-atom electrocatalysts. Angew Chem Int Ed. 2017;56(45):13944.

    CAS  Google Scholar 

  63. Gao H, Yue HH, Qi F, Yu B, Zhang WL, Chen YF. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 2018;37(12):1014.

    CAS  Google Scholar 

  64. Wang Z, Li Q, Xu H, Dahl-Petersen C, Yang Q, Cheng D, Cao D, Besenbacher F, Lauritsen JV, Helveg S, Dong M. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy. 2018;49:634.

    CAS  Google Scholar 

  65. Wu H, Alshareef HN, Zhu T. Photo-assisted electrochemical hydrogen evolution by plasmonic Ag nanoparticle/nanorod heterogeneity. InfoMat. 2019;1(3):417.

    CAS  Google Scholar 

  66. Wang Z, Wu HH, Li Q, Besenbacher F, Li Y, Zeng XC, Dong M. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv Sci. 2020;7(3):1901382.

    CAS  Google Scholar 

  67. Lai WH, Zhang LF, Hua WB, Indris S, Yan ZC, Hu Z, Zhang B, Liu Y, Wang L, Liu M, Liu R, Wang YX, Wang JZ, Hu Z, Liu HK, Chou SL, Dou SX. General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew Chem Int Ed. 2019;58(34):11868.

    CAS  Google Scholar 

  68. Liu H, Peng X, Liu X. Single-atom catalysts for the hydrogen evolution reaction. ChemElectroChem. 2018;5(20):2963.

    CAS  Google Scholar 

  69. Zhao X, Shi J, Ji Y, Liu Y. The electronic structure underlying electrocatalysis of two-dimensional materials. WIREs Comput Mol Sci. 2019;9(6):e1418.

    CAS  Google Scholar 

  70. Wang Y, Song E, Qiu W, Zhao X, Zhou Y, Liu J, Zhang W. Recent progress in theoretical and computational investigations of structural stability and activity of single-atom electrocatalysts. Prog Nat Sci. 2019;29(3):256.

    CAS  Google Scholar 

  71. Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham TK, Liu LM, Botton GA, Sun X. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun. 2016;7(1):13638.

    CAS  Google Scholar 

  72. Liu D, Li X, Chen S, Yan H, Wang C, Wu C, Haleem YA, Duan S, Lu J, Ge B, Ajayan PM, Luo Y, Jiang J, Song L. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat Energy. 2019;4(6):512.

    CAS  Google Scholar 

  73. Zhang H, An P, Zhou W, Guan BY, Zhang P, Dong J, Lou XW. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci Adv. 2018;4:eaao6657.

    Google Scholar 

  74. Peng Y, Lu BZ, Chen SW. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018;30(48):1801995.

    Google Scholar 

  75. Pan Y, Liu S, Sun K, Chen X, Wang B, Wu K, Cao X, Cheong W, Shen R, Han A, Chen Z, Zheng L, Luo J, Lin Y, Liu Y, Wang D, Peng Q, Zhang Q, Chen C, Li Y. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: a superior trifunctional catalyst for overall water splitting and Zn–air batteries. Angew Chem Int Ed. 2018;57(28):8614.

    CAS  Google Scholar 

  76. Zhang L, Jia Y, Gao G, Yan X, Chen N, Chen J, Soo MT, Wood B, Yang D, Du A, Yao X. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem. 2018;4(2):285.

    CAS  Google Scholar 

  77. Chen W, Pei J, He CT, Wan J, Ren H, Zhu Y, Wang Y, Dong J, Tian S, Cheong WC, Lu S, Zheng L, Zheng X, Yan W, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew Chem Int Ed. 2017;56(50):16086.

    CAS  Google Scholar 

  78. Zhang Z, Xiao J, Chen XJ, Yu S, Yu L, Si R, Wang Y, Wang S, Meng X, Wang Y, Tian ZQ, Deng D. Reaction mechanisms of well-defined metal–N4 sites in electrocatalytic CO2 reduction. Angew Chem Int Ed. 2018;57(50):16339.

    CAS  Google Scholar 

  79. Yang F, Song P, Liu X, Mei B, Xing W, Jiang Z, Gu L, Xu W. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew Chem. 2018;57(38):12303.

    CAS  Google Scholar 

  80. Fei H, Dong J, Chen D, Hu T, Duan X, Shakir I, Huang Y, Duan X. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem Soc Rev. 2019;48(20):5207.

    CAS  Google Scholar 

  81. Zhang Y, Zhang W, Feng Y, Ma J. Promoted CO2 electroreduction over indium-doped SnP3: a computational study. J Energy Chem. 2020;48:1.

    CAS  Google Scholar 

  82. Fan Q, Liu S, Qiu J, Sun Z. Single-atom catalysis for electrochemical CO2 reduction. Curr Opin Green Sustain Chem. 2018;16:1.

    CAS  Google Scholar 

  83. Zhang Y, Zhao Y, Wang C, Wei Z, Yang J, Ma J. Zn-doped Cu (100) facet with efficient catalytic ability for the CO2 electroreduction to ethylene. Phys Chem Chem Phys. 2019;21(38):21341.

    CAS  Google Scholar 

  84. Zhang C, Yang S, Wu J, Liu M, Yazdi S, Ren M, Sha J, Zhong J, Nie K, Jalilov A, Li Z, Li H, Yakobson B, Wu Q, Ringe E, Xu H, Ajayan P, Tour J. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv Energy Mater. 2018;8(19):1703487.

    Google Scholar 

  85. Dennis UN, Xin-Ming H, Kim D, Troels S. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat Catal. 2018;1(4):244.

    Google Scholar 

  86. Zheng T, Jiang K, Ta N, Hu Y, Zeng J, Liu J, Wang H. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule. 2019;3(1):265.

    CAS  Google Scholar 

  87. Mou K, Chen Z, Zhang X, Jiao M, Zhang X, Ge X, Zhang W, Liu L. Highly efficient electroreduction of CO2 on nickel single-atom catalysts: atom trapping and nitrogen anchoring. Small. 2019;15(49):1903668.

    CAS  Google Scholar 

  88. Yan D, Li H, Chen C, Zou Y, Wang S. Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods. 2019;3(6):1800331.

    Google Scholar 

  89. Mao C, Yu L, Li J, Zhao J, Zhang L. Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx. Appl Catal B. 2018;224:612.

    CAS  Google Scholar 

  90. van der Ham CJM, Koper MTM, Hetterscheid DGH. Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev. 2014;43(15):5183.

    Google Scholar 

  91. Jia H-P, Quadrelli EA. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev. 2014;43(2):547.

    CAS  Google Scholar 

  92. Wei Z, Feng Y, Ma J. Co-doped graphene edge for enhanced N2-to-NH3 conversion. J Energy Chem. 2020;48:322.

    Google Scholar 

  93. Wei Z, He J, Yang Y, Xia Z, Feng Y, Ma J. Fe, V-co-doped C2N for electrocatalytic N2-to-NH3 conversion. J. Energy Chem. 2021;53:303.

    Google Scholar 

  94. Zhao J, Chen Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J Am Chem Soc. 2017;139(36):12480.

    CAS  Google Scholar 

  95. Yu X, Han P, Wei Z, Huang L, Gu Z, Peng S, Ma J, Zheng G. Boron-doped graphene for electrocatalytic N2 reduction. Joule. 2018;2(8):1610.

    CAS  Google Scholar 

  96. Geng Z, Liu Y, Kong X, Li P, Li K, Liu Z, Du J, Shu M, Si R, Zeng J. Achieving a record-high yield rate of 1209 for N2 electrochemical reduction over Ru single-atom catalysts. Adv Mater. 2018;30(40):1803498.

    Google Scholar 

  97. Han L, Liu X, Chen J, Lin R, Liu H, Lv F, Bak S, Liang Z, Zhao S, Stavitski E, Luo J, Adzic R, Xin HL. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew Chem Int Ed. 2019;131(8):2347.

    Google Scholar 

  98. Legare MA, Belanger-Chabot G, Dewhurst RD, Welz E, Krummenacher I, Engels B, Braunschweig H. Nitrogen fixation and reduction at boron. Science. 2018;359(6378):896.

    CAS  Google Scholar 

  99. Wang XS, Zhou C, Shi R, Liu QQ, Zhang TR. Two-dimensional Sn2Ta2O7 nanosheets as efficient visible light-driven photocatalysts for hydrogen evolution. Rare Met. 2019;38(5):397.

    CAS  Google Scholar 

  100. Wei Z, Ding B, Dou H, Gascon J, Kong X, Xiong Y, Cai B, Zhang R, Zhoug Y, Long M, Miao J, Dou Y, Yuan D, Ma J. 2020 roadmap on pore materials for energy and environmental applications. Chin Chem Lett. 2019;30(12):2110.

    CAS  Google Scholar 

  101. Gao C, Low J, Long R, Kong T, Zhu J, Xiong Y. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem Rev. 2020. https://doi.org/10.1021/acs.chemrev.9b00840.

    Article  Google Scholar 

  102. Wei Z, Zhao Y, Jiang J, Yan W, Feng Y, Ma J. Research progress on hybrid organic-inorganic perovskites for photo-applications. Chin Chem Lett. 2020. https://doi.org/10.1016/j.cclet.2020.05.016.

    Article  Google Scholar 

  103. Zhang H, Liu G, Shi L, Ye J. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater. 2018;8(1):1701343.

    Google Scholar 

  104. Trofimovaite R, Parlett CM, Kumar S, Frattini L, Isaacs MA, Wilson K, Olivi L, Coulson B, Debgupta J, Douthwaite RE. Single atom Cu (I) promoted mesoporous titanias for photocatalytic methyl orange depollution and H2 production. Appl Catal B. 2018;232:501.

    CAS  Google Scholar 

  105. Shi R, Tian C, Zhu X, Peng CY, Mei B, He L, Du XL, Jiang Z, Chen Y, Dai S. Achieving an exceptionally high loading of isolated cobalt single atoms on a porous carbon matrix for efficient visible-light-driven photocatalytic hydrogen production. Chem Sci. 2019;10(9):25851.

    Google Scholar 

  106. Sui Y, Liu S, Li T, Liu Q, Jiang T, Guo Y, Luo JL. Atomically dispersed Pt on specific TiO2 facets for photocatalytic H2 evolution. J Catal. 2017;353:250.

    CAS  Google Scholar 

  107. Cao Y, Chen S, Luo Q, Yan H, Lin Y, Liu W, Cao L, Lu J, Yang J, Yao T. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew Chem Int Ed. 2017;56(40):12191.

    CAS  Google Scholar 

  108. Qiu S, Shen Y, Wei G, Yao S, Xi W, Shu M, Si R, Zhang M, Zhu J, An C. Carbon dots decorated ultrathin CdS nanosheets enabling in-situ anchored Pt single atoms: a highly efficient solar-driven photocatalyst for hydrogen evolution. Appl Catal B. 2019;259:118036.

    CAS  Google Scholar 

  109. Zhao Q, Yao W, Huang C, Wu Q, Xu Q. Effective and durable Co single atomic cocatalysts for photocatalytic hydrogen production. ACS Appl Mater Interf. 2017;9(49):42734.

    CAS  Google Scholar 

  110. Zhou P, Lv F, Li N, Zhang Y, Mu Z, Tang Y, Lai J, Chao Y, Luo M, Lin F. Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy. 2019;56:127.

    CAS  Google Scholar 

  111. Fang X, Shang Q, Wang Y, Jiao L, Yao T, Li Y, Zhang Q, Luo Y, Jiang HL. Single Pt atoms confined into a metal–organic framework for efficient photocatalysis. Adv Mater. 2018;30(7):1705112.

    Google Scholar 

  112. Zhao Q, Sun J, Li S, Huang C, Yao W, Chen W, Zeng T, Wu Q, Xu Q. Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal. 2018;8(12):11863.

    CAS  Google Scholar 

  113. Yi L, Lan F, Li J, Zhao C. Efficient noble-metal-free Co-NG/TiO2 photocatalyst for H2 evolution: synergistic effect between single-atom Co and N-doped graphene for enhanced photocatalytic activity. ACS Sustain Chem Eng. 2018;13(6):12766.

    Google Scholar 

  114. Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater. 2016;28(12):2427.

    CAS  Google Scholar 

  115. Banerjee T, Haase F, Savasci GK, Gottschling K, Ochsenfeld C, Lotsch BV. Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts. J Am Chem Soc. 2017;139(45):16228.

    CAS  Google Scholar 

  116. Wu X, Zhang H, Dong J, Qiu M, Kong J, Zhang Y, Li Y, Xu G, Zhang J, Ye J. Surface step decoration of isolated atom as electron pumping: atomic-level insights into visible-light hydrogen evolution. Nano Energy. 2018;45:109.

    CAS  Google Scholar 

  117. Zuo Q, Liu T, Chen C, Ji Y, Gong X, Mai Y, Zhou Y. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew Chem. 2019;131(30):10304.

    Google Scholar 

  118. Li Y, Wang Z, Xia T, Ju H, Zhang K, Long R, Xu Q, Wang C, Song L, Zhu J. Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis. Adv Mater. 2016;28(32):6959.

    CAS  Google Scholar 

  119. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009;38(1):253.

    CAS  Google Scholar 

  120. Solakidou M, Giannakas A, Georgiou Y, Boukos N, Louloudi M, Deligiannakis Y. Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N, F-TiO2: interplay between CdS photo corrosion and TiO2-dopping. Appl Catal B. 2019;254:194.

    CAS  Google Scholar 

  121. Mateo D, García-Mulero A, Albero J, García H. N-doped defective graphene decorated by strontium titanate as efficient photocatalyst for overall water splitting. Appl Catal B. 2019;252:111.

    CAS  Google Scholar 

  122. Yan X, Liu D, Cao H, Hou F, Liang J, Dou SX. Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods. 2019;3(9):1800501.

    Google Scholar 

  123. Ma X, Hu J, Zheng M, Li D, Lv H, He H, Huang C. N2 reduction using single transition-metal atom supported on defective WS2 monolayer as promising catalysts: a DFT study. Appl Surf Sci. 2019;489:684.

    CAS  Google Scholar 

  124. Riyaz M, Goel N. Single-atom catalysis using chromium embedded in divacant graphene for conversion of dinitrogen to ammonia. ChemPhysChem. 2019;20(15):1954.

    CAS  Google Scholar 

  125. Guo XW, Chen SM, Wang HJ, Zhang ZM, Lin H, Song L, Lu TB. Single-atom molybdenum immobilized on photoactive carbon nitride as efficient photocatalysts for ambient nitrogen fixation in pure water. J Mater Chem A. 2019;7(34):19831.

    CAS  Google Scholar 

  126. Liu S, Wang Y, Wang S, You M, Hong S, Wu TS, Soo YL, Zhao Z, Jiang G, Qiu J. Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets. ACS Sustain Chem Eng. 2019;7(7):6813.

    CAS  Google Scholar 

  127. Wang W, Zhang H, Zhang S, Liu Y, Wang G, Sun C, Zhao H. Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen reduction. Angew Chem Int Ed. 2019;58(46):16644.

    CAS  Google Scholar 

  128. Huang P, Liu W, He Z, Xiao C, Yao T, Zou Y, Wang C, Qi Z, Tong W, Pan B. Single atom accelerates ammonia photosynthesis. Sci China Chem. 2018;61(9):1187.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11675051, 51302079, 51702138, 51702297, 51633006, 51725304, 51733004, 51703159, and 51903186), the Natural Science Foundation of Hunan Province (No. 2017JJ1008), the Key Research and Development Program of Hunan Province of China (No. 2018GK2031) and the Ministry of Science and Technology of China (Nos. 2017YFA0204503 and 2016YFB0401100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Cheng Zhang, Hui Xu or Jian-Min Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, ZX., Zhu, YT., Liu, JY. et al. Recent advance in single-atom catalysis. Rare Met. 40, 767–789 (2021). https://doi.org/10.1007/s12598-020-01592-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01592-1

Keywords

Navigation