Skip to main content

Advertisement

Log in

Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Recently, to ameliorate the forthcoming energy crisis, sustainable energy conversion and storage devices have been extensively investigated. Potassium-ion batteries (KIBs) have aroused widespread attention in these very active research applications due to their earth abundance and similar low redox potential compared to Li-ion batteries (LIBs). It is critical to develop electrode materials with large ion diffusion channels and robust structures for long cycling performance in KIBs. Metal coordination materials, including metal–organic frameworks, Prussian blue, and Prussian blue analogue, as well as their composites and derivatives, are known as promising materials for high-performance KIBs due to their open frameworks, large interstitial voids, functionality and tailorability. In this review, we give an overview of the recent advances on the application of metal coordination materials in KIBs. In addition, the methods to enhance their K-ion storage properties are summarized and discussed, such as morphology engineering, doping, as well as compositing with other materials. Ultimately, some prospects for future research of metal coordination materials for KIBs are also proposed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sui D, Xu LQ, Zhang HT, Sun ZH, Kan B, Ma YF, Chen YS. A 3D cross-linked graphene-based honeycomb carbon composite with excellent confinement effect of organic cathode material for lithium-ion batteries. Carbon. 2020;157:656.

    CAS  Google Scholar 

  2. Ma XD, Xiong XH, Zou PJ, Liu WZ, Wang F, Liang LW, Liu Y, Yuan CZ, Lin Z. General and scalable fabrication of core–shell metal sulfides@C anchored on 3D N-doped foam toward flexible sodium ion batteries. Small. 2019;15(45):1903259.

    CAS  Google Scholar 

  3. Li YX, Zhai XL, Liu Y, Wei HJ, Ma JQ, Chen M, Liu XM, Zhang WH, Wang GX, Ren FZ, Wei SZ. WO3-based materials as electrocatalysts for hydrogen evolution reaction. Front Mater. 2020;7(105):105.

    Google Scholar 

  4. Li JY, Zhang WM, Zhang X, Huo LY, Liang JY, Wu LS, Liu Y, Gao JF, Pang H, Xue HG. Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. J Mater Chem A. 2020;8(5):2463.

    CAS  Google Scholar 

  5. Shi ZJ, Feng WJ, Wang X, Li MM, Song CK, Chen LJ. Catalytic cobalt phosphide Co2P/carbon nanotube nanocomposite as host material for high performance lithium–sulfur battery cathode. J Alloys Compd. 2020. https://doi.org/10.1016/j.jallcom.2020.156289.

    Article  Google Scholar 

  6. Zou PJ, Lin ZH, Fan MN, Wang F, Liu Y, Xiong XH. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl Surf Sci. 2020;504:144506.

    CAS  Google Scholar 

  7. Hao X, Zhao Q, Su S, Zhang S, Ma J, Shen L, Yu Q, Zhao L, Liu Y, Kang F, He YB. Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries. Adv Energy Mater. 2019;9(34):1901604.

    Google Scholar 

  8. Wang X, Yang C, Xiong X, Chen G, Huang M, Wang JH, Liu Y, Liu M, Huang K. A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li–S batteries. Energy Storage Mater. 2019;16:344.

    Google Scholar 

  9. Zhao Q, Hao X, Su S, Ma J, Hu Y, Liu Y, Kang F, He YB. Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. J Mater Chem A. 2019;7(26):15871.

    CAS  Google Scholar 

  10. Li Y, Xu Y, Liu Y, Pang H. Exposing 001 crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small. 2019;15(36):1902463.

    Google Scholar 

  11. Yuan M, Guo X, Liu Y, Pang H. Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage. J Mater Chem A. 2019;7(39):22123.

    CAS  Google Scholar 

  12. Wang G, Chen C, Chen YH, Kang XW, Yang CH, Wang F, Liu Y, Xiong XH. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium–metal anode. Angew Chem Int Ed Engl. 2020;59(5):2055.

    CAS  Google Scholar 

  13. Li MM, Feng WJ, Wang X. The dual-play of carbon nanotube embedded with CoNi N codoped porous polyhedra toward superior lithium–sulfur batteries. J Alloys Compd. 2020;853:157194. https://doi.org/10.1016/j.jallcom.2020.157194.

    Article  CAS  Google Scholar 

  14. Wang F, Liu Y, Zhao YF, Wang Y, Wang ZJ, Zhang WH, Ren FZ. Facile synthesis of two-dimensional porous MgCo2O4 nanosheets as anode for lithium-ion batteries. Appl Sci-Basel. 2018;8(1):22.

    Google Scholar 

  15. Liu Y, Wang HC, Yang KK, Yang YN, Ma JQ, Pan KM, Wang GX, Ren FZ, Pang H. Enhanced electrochemical performance of Sb2O3 as an anode for lithium-ion batteries by a stable cross-linked binder. Appl Sci-Basel. 2019;9(13):2677.

    CAS  Google Scholar 

  16. Guo XT, Zhang YZ, Zhang F, Li Q, Anjum DH, Liang HF, Liu Y, Liu CS, Alshareef HN, Pang H. A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J Mater Chem A. 2019;7(26):15969.

    CAS  Google Scholar 

  17. Liu G, Cui J, Luo R, Liu Y, Huang X, Wu N, Jin X, Chen H, Tang S, Kim J-K, Liu X. 2D MoS2 grown on biomass-based hollow carbon fibers for energy storage. Appl Surf Sci. 2019;469:854.

    CAS  Google Scholar 

  18. Liu Y, Wang Y, Wang F, Lei ZX, Zhang WH, Pan KM, Liu J, Chen M, Wang GX, Ren FZ, Wei SZ. Facile synthesis of antimony tungstate nanosheets as anodes for lithium-ion batteries. Nanomaterials. 2019;9(12):1689.

    CAS  Google Scholar 

  19. Wang F, Liu Y, Wei HJ, Wang GX, Ren FZ, Liu XM, Chen M, Volinsky AA, Wei SZ, He Y-B. Graphene induced growth of Sb2WO6 nanosheets for high-performance pseudocapacitive lithium-ion storage. J Alloys Compd. 2020;839:9.

    Google Scholar 

  20. Wang R, Cao X, Zhao D, Zhu L, Xie L, Liu J, Liu Y. Wet-chemistry synthesis of Li4Ti5O12 as anode materials rendering high-rate Li-ion storage. Int J Energy Res. 2020;44(6):4211.

    CAS  Google Scholar 

  21. Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.

    CAS  Google Scholar 

  22. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.

    CAS  Google Scholar 

  23. Eftekhari A, Jian ZL, Ji XL. Potassium secondary batteries. ACS Appl Mater Int. 2017;9(5):4404.

    CAS  Google Scholar 

  24. Sun Yi, Shi PC, Chen JJ, Wu QJ, Liang X, Rui XH, Xiang HF, Yu Y. Development and challenge of advanced nonaqueous sodium ion batteries. Energy Chem. 2020;2(2):100031.

    Google Scholar 

  25. Chen Y, Zhuo SM, Li ZY, Wang CL. Redox polymers for rechargeable metal-ion batteries. Energy Chem. 2020;2(2):100030.

    Google Scholar 

  26. Yu M, Yin Z, Yan G, Wang Z, Guo H, Li G, Liu Y, Li L, Wang J. Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-doped mesoporous carbon nanofiber. J Power Sources. 2020;449:227514.

    CAS  Google Scholar 

  27. Luo W, Wan JY, Ozdemir B, Bao WZ, Chen YN, Dai JQ, Lin H, Xu Y, Gu F, Barone V, Hu LB. Potassium ion batteries with graphitic materials. Nano Lett. 2015;15(11):7671.

    CAS  Google Scholar 

  28. Jian ZL, Xing ZY, Bommier C, Li ZF, Ji XL. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv Energy Mater. 2016;6(3):1501874.

    Google Scholar 

  29. Du M, Li Q, Zhao Y, Liu CS, Pang H. A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coord Chem Rev. 2020;416:213341.

    CAS  Google Scholar 

  30. Zhou AJ, Cheng WJ, Wang W, Zhao Q, Xie J, Zhang WX, Gao HC, Xue LG, Li JZ. Hexacyanoferrate-type prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv Energy Mater. 2020;35:2000943.

    Google Scholar 

  31. Zheng SS, Xue HG, Pang H. Supercapacitors based on metal coordination materials. Coord Chem Rev. 2018;373:2.

    CAS  Google Scholar 

  32. Li C, Hu X, Hu B. Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim Acta. 2017;253:439.

    CAS  Google Scholar 

  33. An Y, Fei H, Zhang Z, Ci L, Xiong S, Feng J. A titanium-based metal–organic framework as an ultralong cycle-life anode for PIBs. Chem Commun. 2017;53(59):8360.

    CAS  Google Scholar 

  34. Li C, Wang KB, Li JZ, Zhang QC. Nanostructured potassium-organic framework as an effective anode for potassium-ion batteries with a long cycle life. Nanoscale. 2020;12(14):7870.

    CAS  Google Scholar 

  35. Liao J, Hu Q, Mu J, He X, Wang S, Chen C. A vanadium-based metal-organic phosphate framework material K2(VO)2(HPO4)2(C2O4) as a cathode for potassium-ion batteries. Chem Commun. 2019;55(5):659.

    CAS  Google Scholar 

  36. Deng QJ, Feng SS, Hui P, Chen HT, Tian CC, Yang R, Xu YH. Exploration of low-cost microporous Fe(III)-based organic framework as anode material for potassium-ion batteries. J Alloys Compd. 2020;830:154714.

    CAS  Google Scholar 

  37. Liu S, Yang B, Zhou J, Song H. Nitrogen-rich carbon-onion-constructed nanosheets: an ultrafast and ultrastable dual anode material for sodium and potassium storage. J Mater Chem A. 2019;7(31):18499.

    CAS  Google Scholar 

  38. Li Y, Yang C, Zheng F, Ou X, Pan Q, Liu Y, Wang G. High pyridine N-doped porous carbon derived from metal–organic frameworks for boosting potassium-ion storage. J Mater Chem A. 2018;6(37):17959.

    CAS  Google Scholar 

  39. Xiong P, Zhao X, Xu Y. Nitrogen-doped carbon nanotubes derived from metal–organic frameworks for potassium-ion battery anodes. Chemsuschem. 2018;11(1):202.

    CAS  Google Scholar 

  40. Lu G, Wang H, Zheng Y, Zhang H, Yang Y, Shi J, Huang M, Liu W. Metal–organic framework derived N-doped CNT@ porous carbon for high-performance sodium- and potassium-ion storage. Electrochim Acta. 2019;319:541.

    CAS  Google Scholar 

  41. Li D, Cheng X, Xu R, Wu Y, Zhou X, Ma C, Yu Y. Manipulation of 2D carbon nanoplates with a core–shell structure for high-performance potassium-ion batteries. J Mater Chem A. 2019;7(34):19929.

    CAS  Google Scholar 

  42. Li J, Li Y, Ma X, Zhang K, Hu J, Yang C, Liu M. A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries. Chem Eng J. 2020;384:123328.

    CAS  Google Scholar 

  43. Zhang W, Jiang X, Wang X, Kaneti YV, Chen Y, Liu J, Jiang JS, Yamauchi Y, Hu M. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew Chem Int Ed Engl. 2017;56(29):8435.

    CAS  Google Scholar 

  44. Zhou X, Chen L, Zhang W, Wang J, Liu Z, Zeng S, Xu R, Wu Y, Ye S, Feng Y, Cheng X, Peng Z, Li X, Yu Y. Three-dimensional ordered macroporous metal–organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019;19(8):4965.

    CAS  Google Scholar 

  45. Li Y, Zhong W, Yang C, Zheng F, Pan Q, Liu Y, Wang G, Xiong X, Liu M. N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem Eng J. 2019;358:1147.

    CAS  Google Scholar 

  46. Lu J, Wang C, Yu H, Gong S, Xia G, Jiang P, Xu P, Yang K, Chen Q. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv Funct Mater. 2019;29(49):1906126.

    CAS  Google Scholar 

  47. Xia GL, Wang CL, Jiang P, Lu J, Diao JF, Chen QW. Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. J Mater Chem A. 2019;7(19):12317.

    CAS  Google Scholar 

  48. Yan C, Gu X, Zhang L, Wang Y, Yan L, Liu D, Li L, Dai P, Zhao X. Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries. J Mater Chem A. 2018;6(36):17371.

    CAS  Google Scholar 

  49. Su S, Liu Q, Wang J, Fan L, Ma R, Chen S, Han X, Lu B. Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl Mater Int. 2019;11(25):22474.

    CAS  Google Scholar 

  50. Cheng N, Zhao JG, Fan L, Liu ZM, Chen SH, Ding HB, Yu XZ, Liu ZG, Lu BG. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem Commun. 2019;55(83):12511.

    CAS  Google Scholar 

  51. Miao W, Zhao X, Wang R, Liu Y, Li L, Zhang Z, Zhang W. Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: a promising anode for potassium ion battery. J Colloid Interface Sci. 2019;556:432.

    CAS  Google Scholar 

  52. Yi Y, Zhao W, Zeng Z, Wei C, Lu C, Shao Y, Guo W, Dou S, Sun J. ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage. Small. 2020. https://doi.org/10.1002/smll.201906566.

    Article  Google Scholar 

  53. Xu X, Feng J, Liu J, Lv F, Hu R, Fang F, Yang L, Ouyang L, Zhu M. Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochim Acta. 2019;312:224.

    CAS  Google Scholar 

  54. Zhang ZF, Wu CX, Chen ZH, Li HY, Cao HJ, Luo XJ, Fang ZB, Zhu YY. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. J Mater Chem A. 2020;8(6):3369.

    CAS  Google Scholar 

  55. Miao W, Zhang Y, Li H, Zhang Z, Li L, Yu Z, Zhang W. ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J Mater Chem A. 2019;7(10):5504.

    CAS  Google Scholar 

  56. Rui B, Li J, Chang L, Wang H, Lin L, Guo Y, Nie P. Engineering MoS2 nanosheets anchored on metal organic frameworks derived carbon polyhedra for superior lithium and potassium storage. Front Energy Res. 2019;7:142.

    Google Scholar 

  57. Yang C, Feng J, Zhang Y, Yang Q, Li P, Arlt T, Lai F, Wang J, Yin C, Wang W, Qian G, Cui L, Yang W, Chen Y, Manke I. Multidimensional integrated chalcogenides nanoarchitecture achieves highly stable and ultrafast potassium-ion storage. Small. 2019;15(44):1903720.

    CAS  Google Scholar 

  58. Han Y, Li W, Zhou K, Wu X, Wu H, Wu X, Shi Q, Diao G, Chen M. Bimetallic sulfide Co9S8/N-C@MoS2 dodecahedral heterogeneous nanocages for boosted Li/K storage. Chemnanomat. 2020;6(1):132.

    CAS  Google Scholar 

  59. Xie J, Zhu Y, Zhuang N, Lei H, Zhu W, Fu Y, Javed MS, Li J, Mai W. Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale. 2018;10(36):17092.

    CAS  Google Scholar 

  60. Ma G, Li C, Liu F, Majeed MK, Feng Z, Cui Y, Yang J, Qian Y. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 2018;10:241.

  61. Etogo CA, Huang H, Hong H, Liu G, Zhang L. Metal–organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 2020;24:167.

  62. Hu Y, Lu T, Zhang Y, Sun Y, Liu J, Wei D, Ju Z, Zhuang Q. Highly dispersed ZnSe nanoparticles embedded in N-doped porous carbon matrix as an anode for potassium ion batteries. Part Part Syst Char. 2019;36(10):1900199.

    CAS  Google Scholar 

  63. Yuan JJ, Liu W, Zhang XK, Zhang YH, Yang WT, Lai WD, Li XK, Zhang JJ, Li XF. MOF derived ZnSe–FeSe2/RGO nanocomposites with enhanced sodium/potassium storage. J Power Sources. 2020;455:227937.

    CAS  Google Scholar 

  64. Eftekhari A. Potassium secondary cell based on Prussian blue cathode. J Power Sources. 2004;126(1–2):221.

    CAS  Google Scholar 

  65. Zhou L, Zhang M, Wang Y, Zhu Y, Fu L, Liu X, Wu Y, Huang W. Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim Acta. 2017;232:106.

    CAS  Google Scholar 

  66. Su D, McDonagh A, Qiao SZ, Wang G. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv Mater. 2017;29(1):1604007.

  67. Liao J, Hu Q, Yu Y, Wang H, Tang Z, Wen Z, Chen C. A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte. J Mater Chem A. 2017;5(36):19017.

    CAS  Google Scholar 

  68. Zhang C, Xu Y, Zhou M, Liang L, Dong H, Wu M, Yang Y, Lei Y. Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Adv Funct Mater. 2017;27(4):1604307.

    Google Scholar 

  69. Qin M, Ren W, Meng J, Wang X, Yao X, Ke Y, Li Q, Ma L. Realizing superior prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly. ACS Sustain Chem Eng. 2019;7(13):11564.

    CAS  Google Scholar 

  70. Chong S, Chen Y, Zheng Y, Tan Q, Shu C, Liu Y, Guo Z. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. J Mater Chem A. 2017;5(43):22465.

    CAS  Google Scholar 

  71. Huang B, Liu Y, Lu Z, Shen M, Zhou J, Ren J, Li X, Liao S. Prussian Blue K2FeFe(CN)6 doped with nickel as a superior cathode: an efficient strategy to enhance potassium storage performance. ACS Sustain Chem Eng. 2019;7(19):16659.

    CAS  Google Scholar 

  72. Huang B, Shao Y, Liu Y, Lu Z, Lu X, Liao S. Improving potassium-ion batteries by optimizing the composition of prussian blue cathode. ACS Appl Energy Mater. 2019;2(9):6528.

    CAS  Google Scholar 

  73. Wessells CD, Peddada SV, Huggins RA, Cui Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 2011;11(12):5421.

    CAS  Google Scholar 

  74. Lee HW, Pasta M, Wang RY, Ruffo R, Cui Y. Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes. Faraday Discuss. 2014;176:69.

    CAS  Google Scholar 

  75. Zheng J, Deng W, Hu Z, Zhuo Z, Liu F, Chen H, Lin Y, Yang W, Amine K, Li R, Lu J, Pan F. Asymmetric K/Li-ion battery based on intercalation selectivity. ACS Energy Lett. 2018;3(1):65.

    CAS  Google Scholar 

  76. Deng L, Yang Z, Tan L, Zeng L, Zhu Y, Guo L. Investigation of the Prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv Mater. 2018;30(31):1802510.

    Google Scholar 

  77. Bie XF, Kubota K, Hosaka T, Chihara K, Komaba S. A novel K-ion battery: hexacyanoferrate(II)/graphite cell. J Mater Chem A. 2017;5(9):4325.

    CAS  Google Scholar 

  78. Jiang X, Zhang T, Yang L, Li G, Lee JY. A Fe/Mn-based prussian blue analogue as a K-rich cathode material for potassium-ion batteries. Chemelectrochem. 2017;4(9):2237.

    CAS  Google Scholar 

  79. Xue LG, Li YT, Gao HC, Zhou WD, Lu XJ, Kaveevivitchai W, Manthiram A, Goodenough JB. Low-cost high energy potassium cathode. J Am Chem Soc. 2017;139(6):2164.

    CAS  Google Scholar 

  80. Luo Y, Shen B, Guo B, Hu L, Xu Q, Zhan R, Zhang Y, Bao S, Xu M. Potassium titanium hexacyanoferrate as a cathode material for potassium-ion batteries. J Phys Chem Solids. 2018;122:31.

    CAS  Google Scholar 

  81. Islas-Vargas C, Guevara-Garcia A, Oliver-Tolentino M, Ramos-Sanchez G, Gonzalez I, Galvan M. Experimental and theoretical investigation on the origin of the high intercalation voltage of K2Zn3[Fe(CN)6]2 cathode. J Electrochem Soc. 2018;166(3):A5139.

    Google Scholar 

  82. Heo JW, Chae MS, Hyoung J, Hong S-T. Rhombohedral potassium–zinc hexacyanoferrate as a cathode material for nonaqueous potassium-ion batteries. Inorg Chem. 2019;58(5):3065.

    CAS  Google Scholar 

  83. Zhang L, Chen L, Zhou X, Liu Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv Energy Mater. 2015;5(2):1400930.

  84. Wu X, Jian Z, Li Z, Ji X. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem Commun. 2017;77:54.

    CAS  Google Scholar 

  85. Padigi P, Thiebes J, Swan M, Goncher G, Evans D, Solanki R. Prussian Green: a high rate capacity cathode for potassium ion batteries. Electrochim Acta. 2015;166:32.

    CAS  Google Scholar 

  86. He G, Nazar LF. Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017;2(5):1122.

    CAS  Google Scholar 

  87. Li C, Wang X, Deng W, Liu C, Chen J, Li R, Xue M. Size engineering and crystallinity control enable high-capacity aqueous potassium-ion storage of prussian white analogues. Chemelectrochem. 2018;5(24):3887.

    CAS  Google Scholar 

  88. Sun YP, Xie J, Zhao XB, Zhuang DG, Zhang GL. Prussian blue cathode material: preparation by ion-exchange method and electrochemical potassium-storage performance. Chin J Inorg Chem. 2020;36(1):106.

    CAS  Google Scholar 

  89. Husmann S, Zarbin AJG. Cation effect on the structure and properties of hexacyanometallates-based nanocomposites: improving cathode performance in aqueous metal-ions batteries. Electrochim Acta. 2018;283:1339.

    CAS  Google Scholar 

  90. Nossol E, Souza VHR, Zarbin AJG. Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. J Colloid Interface Sci. 2016;478:107.

    CAS  Google Scholar 

  91. Zhu YH, Yin YH, Yang X, Sun T, Wang S, Jiang YS, Yan JM, Zhang XB. Transformation of rusty stainless-steel meshes into stable, low-cost, and binder-free cathodes for high-performance potassium-ion batteries. Angew Chem Int Ed Engl. 2017;56(27):7881.

    CAS  Google Scholar 

  92. Sun Y, Liu C, Xie J, Zhuang D, Zheng W, Zhao X. Potassium manganese hexacyanoferrate/graphene as a high-performance cathode for potassium-ion batteries. New J Chem. 2019;43(29):11618.

    CAS  Google Scholar 

  93. Morant-Giner M, Sanchis-Gual R, Romero J, Alberola A, Garcia-Cruz L, Agouram S, Galbiati M, Padial NM, Waerenborgh JC, Marti-Gastaldo C, Tatay S, Forment-Aliaga A, Coronado E. Prussian Blue@MoS2 layer composites as highly efficient cathodes for sodium– and potassium-ion batteries. Adv Funct Mater. 2018;28(27):1706125.

    Google Scholar 

  94. Xue L, Li L, Huang Y, Huang R, Wu F, Chen R. Polypyrrole-modified prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl Mater Int. 2019;11(25):22339.

    CAS  Google Scholar 

  95. Zhang SP, Wang G, Wang BB, Wang JM, Bai JT, Wang H. 3D carbon nanotube network bridged hetero-structured Ni–Fe–S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv Funct Mater 2020:2001592. https://doi.org/10.1002/adfm.202001592.

  96. Chen X, Zeng S, Muheiyati H, Zhai Y, Li C, Ding X, Wang L, Wang D, Xu L, He Y, Qian Y. Double-shelled Ni–Fe–P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li–S batteries. Acs Energy Lett. 2019;4(7):1496.

    CAS  Google Scholar 

  97. Wang J, Wang B, Liu X, Bai J, Wang H, Wang G. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem Eng J. 2020;382:1706125.

    Google Scholar 

  98. Stilwell DE, Park KH, Miles MH. Electrochemical studies of the factors influencing the cycle stability of Prussian blue films. J Appl Electrochem. 1992;22(4):325.

    CAS  Google Scholar 

  99. Zampardi G, Sokolov SV, Batchelor-McAuley C, Compton RG. Potassium (de-)insertion processes in prussian blue particles: ensemble versus single nanoparticle behaviour. Chem-Eur J. 2017;23(57):14338.

    CAS  Google Scholar 

  100. Xiao X, Zhang G, Xu Y, Zhang H, Guo X, Liu Y, Pang H. A new strategy for the controllable growth of MOF@PBA architectures. J Mater Chem A. 2019;7(29):17266.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_16R21), the Chinese 02 Special Fund (No. 2017ZX02408003), the Scientific and Technological Project of Henan Province (No. 182102210297), the Open Fund of National Joint Engineering Research Center (Nos. HKDNM201807 and HKDNM2019017), the Science Foundation for Youths of Henan University of Science and Technology (No. 2013QN006), the Student Research Training Plan of Henan University of Science and Technology (No. 2020026) and the National Undergraduate Innovation and Entrepreneurship Training Program (No. 202010464031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Feng-Zhang Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Liu, Y., Wei, HJ. et al. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 40, 448–470 (2021). https://doi.org/10.1007/s12598-020-01649-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01649-1

Keywords

Navigation