Skip to main content
Log in

Enhanced catalytic performance for selective oxidation of propene with O2 over bimetallic Au–Cu/SiO2 catalysts

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Au–Cu bimetallic nanoparticles with uniform size, shape, and compositions were synthesized by wet chemistry method, and then the Au–Cu/SiO2 catalyst supported on SiO2 was prepared. Meanwhile, their catalytic activity for the selective oxidation of propene to acrolein using O2 as an oxidant was evaluated. The bimetallic catalyst shows a significantly enhanced catalytic performance comparing with Au and Cu monometallic catalysts. Characterization of the materials and kinetic study was conducted to explore the cooperating mechanism of Au and Cu for improving the catalytic activity of the bimetallic catalyst. Cu component can segregate to the alloy surface and the Au–Cu alloy transferred to Au–CuO core/shell structure after annealing during the preparation process. Based on the Mars–van Krevelen mechanism for the selective oxidation of propene over the prepared catalysts, the coexistence of CuO can promote the adsorption and activation of O2. Meanwhile, the electrons transfer from Au to Cu in the catalyst can facilitate the adsorptions of both oxygen on CuO sites and propene on Au sites. The combined effects of the above two aspects result in the high catalytic activity of the Au–Cu/SiO2 catalyst for selective oxidation of propene to acrolein, compared to the Au/SiO2 and CuO/SiO2 catalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gong YT, Li MM, Li HRL, Wang Y. Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem. 2015;17(2):715.

    CAS  Google Scholar 

  2. Zhang PF, Lu HF, Zhou Y, Zhang L, Wu Z, Yang SZ, Shi HL, Zhu QL, Chen YF, Dai S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat Commun. 2015;6:8446.

    CAS  Google Scholar 

  3. Zhang PF, Deng J, Mao JY, Li HR, Wang Y. Selective aerobic oxidation of alcohols by a mesoporous graphitic carbon nitride/N-hydroxyphthalimide system under visible-light illumination at room temperature. Chin J Catal. 2015;36(9):1580.

    CAS  Google Scholar 

  4. Zheng X, Guo YL, Guo Y, Zhang Q, Liu XH, Wang L, Zhan WC, Lu GZ. Epoxidation of propylene by molecular oxygen over unsupported AgCux bimetallic catalyst. Rare Met. 2015;34(7):477.

    CAS  Google Scholar 

  5. Zhu WM, Zhang QH, Wang Y. Cu(I)-catalyzed epoxidation of propylene by molecular oxygen. J Phys Chem C. 2008;112:7731.

    CAS  Google Scholar 

  6. He J, Zhai QG, Zhang QH, Deng WP, Wang Y. Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification. J Catal. 2013;299:53.

    CAS  Google Scholar 

  7. Hua Q, Cao T, Gu XK, Lu JQ, Jiang ZQ, Pan XR, Luo LF, Li WX, Huang WX. Crystal-plane-controlled selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen. Angew Chem Int Edit. 2014;53(19):4856.

    CAS  Google Scholar 

  8. Reitz JB, Solomon EI. Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity. J Am Chem Soc. 1998;120(44):11467.

    CAS  Google Scholar 

  9. Su WG, Wang SG, Ying PL, Feng ZC, Li C. A molecular insight into propylene epoxidation on Cu/SiO2 catalysts using O2 as oxidant. J Catal. 2009;268(1):165.

    CAS  Google Scholar 

  10. Yao SN, Xu LH, Wang J, Jing XL, Odoom-Wubah T, Sun DH, Huang JL, Li QB. Activity and stability of titanosilicate supported Au catalyst for propylene epoxidation with H2 and O2. Molecular Catalysis. 2018;448:144.

    CAS  Google Scholar 

  11. Feng X, Sheng N, Liu YB, Chen XB, Chen D, Yang CH, Zhou XG. Simultaneously enhanced stability and selectivity for propene epoxidation with H2 and O2 on Au catalysts supported on nano-crystalline mesoporous TS-1. ACS Catal. 2017;7(4):2668.

    CAS  Google Scholar 

  12. Lee WS, Zhang R, Akatay MC, Baertsch CD, Stach EA, Ribeiro FH, Deglass WN. Differences in catalytic sites for CO oxidation and propylene epoxidation on Au nanoparticles. ACS Catal. 2011;1(10):1327.

    CAS  Google Scholar 

  13. Feng X, Duan XZ, Qian G, Zhou XG, Chen D, Yuan WK. Au nanoparticles deposited on the external surfaces of TS-1: enhanced stability and activity for direct propylene epoxidation with H2 and O2. Appl Catal B-Environ. 2014;150–151:396.

    Google Scholar 

  14. Duan SB, Wang RM. Nanomaterials composed of noble metals and transition metal compounds: interface structure control and in-situ characterization at atomic scale. Chin J Rare Met. 2019;43(11):1179.

    Google Scholar 

  15. Zhang S, Metin O, Su D, Sun SH. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew Chem Int Ed. 2013;52(13):3681.

    CAS  Google Scholar 

  16. Wang LP, Shen XQ, Tian L, Yang N, Xie G, Li B. Preparation of PtCo composite nanowires and characterization of electrocatalytic performance for oxygen reduction reaction. Chin J Rare Met. 2019;43(4):367.

    Google Scholar 

  17. Liu XF, Hood ZD, Zheng Q, Jin T, Foo GS, Wu ZL, Tian CC, Guo YL, Dai S, Zhan WC, Zhu HY, Chi MF. Optimizing the structural configuration of FePt–FeOx nanoparticles at the atomic scale by tuning the post-synthetic conditions. Nano Energy. 2019;55:441.

    CAS  Google Scholar 

  18. Liu XY, Wang AQ, Zhang T, Su DS, Mou CY. Au–Cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: effects of Au/Cu ratios. Catal Today. 2011;160(1):103.

    CAS  Google Scholar 

  19. Bauer JC, Mullins D, Li MJ, Wu ZL, Payzant EA, Overbury SH, Dai S. Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. Phys Chem Chem Phys. 2011;13(7):2571.

    CAS  Google Scholar 

  20. Li LC, Wang CS, Ma XX, Yang ZH, Lu XH. An Au–Cu bimetal catalyst supported on mesoporous TiO2 with stable catalytic performance in CO oxidation. Chin J Catal. 2012;33(11–12):1778.

    CAS  Google Scholar 

  21. Jia QQ, Zhao DF, Tang B, Zhao N, Li HD, Sang YH, Bao N, Zhang XM, Xu XH, Liu H. Synergistic catalysis of Au–Cu/TiO2-NB nanopaper in aerobic oxidation of benzyl alcohol. J Mater Chem A. 2014;2(38):16292.

    CAS  Google Scholar 

  22. Sobczak I, Wolski Ł. Au–Cu on Nb2O5 and Nb/MCF supports–surface properties and catalytic activity in glycerol and methanol oxidation. Catal Today. 2015;254:72.

    CAS  Google Scholar 

  23. Belin S, Bracey CL, Briois V, Ellis PR, Hutchings GJ, Hyde TI, Sankar G. CuAu/SiO2 catalysts for the selective oxidation of propene to acrolein: the impact of catalyst preparation variables on material structure and catalytic performance. Catal Sci Technol. 2013;3(11):2944.

    CAS  Google Scholar 

  24. Llorca J, Dominguez M, Ledesma C, Chimentao RJ, Medina F, Sueiras J, Angurell I, Seco M, Rossell O. Propene epoxidation over TiO2-supported Au–Cu alloy catalysts prepared from thiol-capped nanoparticles. J Catal. 2008;258(1):187.

    CAS  Google Scholar 

  25. Chimentão RJ, Medina F, Fierro JLG, Llorca J, Sueiras JE, Cesteros Y, Salagre P. Propene epoxidation by nitrous oxide over Au–Cu/TiO2 alloy catalysts. J Mol Catal A-Chem. 2007;274(1–2):159.

    Google Scholar 

  26. Sinfelt JH, Barnett AE (1976) Novel gold-copper catalysts for the partial oxidation of olefins. United States Patent 3989674.

  27. Grzelak K, Sobczak I, Yang CM, Ziolek M. Gold-copper catalysts supported on SBA-15 with long and short channels—characterization and the use in propene oxidation. Catal Today. 2019. https://doi.org/10.1016/j.cattod.2019.05.013.

    Article  Google Scholar 

  28. Zhan WC, Wang JL, Wang HF, Zhang JS, Liu XF, Zhang PF, Chi MF, Guo YL, Guo Y, Lu GZ, Sun SH, Dai S, Zhu HY. Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J Am Chem Soc. 2017;139(26):8846.

    CAS  Google Scholar 

  29. Liu XW, Geng BY, Du QB, Ma JZ, Liu XM. Temperature-controlled self-assembled synthesis of CuO, Cu2O and Cu nanoparticles through a single-precursor route. Mater Sci Eng, A. 2007;448(1–2):7.

    Google Scholar 

  30. Liu X, Wang A, Wang X, Mou CY, Zhang T. Au–Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem Commun. 2008;27:3187.

    Google Scholar 

  31. Bracey CL, Ellis PR, Hutchings GJ. Application of copper-gold alloys in catalysis: current status and future perspectives. Chem Soc Rev. 2009;38(8):2231.

    CAS  Google Scholar 

  32. Li DG, Wang C, Tripkovic D, Sun SH, Markovic NM, Stamenkovic VR. Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. ACS Catal. 2012;2(7):1358.

    CAS  Google Scholar 

  33. Tao F, Grass ME, Zhang YW, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA. Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science. 2008;322(5903):932.

    CAS  Google Scholar 

  34. Tao F, Grass ME, Zhang YW, Butcher DR, Aksoy F, Aloni S, Altoe V, Alayoglu S, Renzas JR, Tsung CK, Zhu ZW, Liu Z, Salmeron M, Somorjai GA. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. J Am Chem Soc. 2010;132(25):8697.

    CAS  Google Scholar 

  35. Albonetti S, Pasini T, Lolli A, Blosi M, Piccinini M, Dimitratos N, Lopez-Sanchez JA, Morgan DJ, Carley AF, Hutchings GJ, Cavani F. Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold–copper catalysts prepared from preformed nanoparticles: effect of Au/Cu ratio. Catal Today. 2012;195(1):120.

    CAS  Google Scholar 

  36. Wang S, Wang J, Zhu XJ, Wang JQ, Terasaki O, Wan Y. Size·control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework. Chin J Catal. 2016;37(1):61.

    Google Scholar 

  37. Brener IPR, Haick H, Tannenbaum R. Oxidation of polycrystalline copper thin films at ambient conditions. J Phys Chem C. 2008;112(4):1101.

    Google Scholar 

  38. Bauer JC, Veith GM, Allard LF, Oyola Y, Overbury SH, Dai S. Silica-supported Au–CuOx hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol. ACS Catal. 2012;2(12):2537.

    CAS  Google Scholar 

  39. Destro P, Kokumai TM, Scarpellini A, Pasquale L, Manna L, Colombo M, Zanchet D. The crucial role of the support in the transformations of bimetallic nanoparticles and catalytic performance. ACS Catal. 2018;8(2):1031.

    CAS  Google Scholar 

  40. Sandoval A, Louis C, Zanella R. Improved activity and stability in CO oxidation of bimetallic Au–Cu/TiO2 catalysts prepared by deposition–precipitation with urea. Appl Catal B-Environ. 2013;140–141:363.

    Google Scholar 

  41. Zhan WC, He Q, Liu XF, Guo YL, Wang YQ, Wang L, Guo Y, Borisevich AY, Zhang JS, Lu GZ, Dai S. A sacrificial coating strategy toward enhancement of metal-support interaction for ultrastable Au nanocatalysts. J Am Chem Soc. 2016;138(49):16130.

    CAS  Google Scholar 

  42. Zhan WC, Shu Y, Sheng YJ, Zhu HY, Guo YL, Wang L, Guo Y, Zhang JS, Lu GZ, Dai S. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis. Angew Chem Int Ed. 2017;56(16):4494.

    CAS  Google Scholar 

  43. Yang XW, Li Q, Lu EJ, Wang ZQ, Gong XQ, Yu ZY, Guo Y, Wang L, Guo YL, Zhan WC, Zhang JS, Dai S. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat Commun. 2019;10(1):1.

    Google Scholar 

  44. Wang L, Wang L, Meng X, Xiao FS. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv Mater. 2019;31(50):1901905.

    CAS  Google Scholar 

  45. Shen K, Lin JP, Xia Q, Dai L, Zhou GJ, Guo YL, Lu GZ, Zhan WC. Tuning performance of Pd/Sn0.9Ce0.1O2 catalyst for methane combustion by optimizing calcination temperature of support. Rare Met. 2019;38(2):107.

    CAS  Google Scholar 

  46. Yu JG, Wang B. Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl Catal B-Environ. 2010;94(3–4):295.

    CAS  Google Scholar 

  47. Yu YB, Jiao ZJ, Xue H, Yan Z, Bo QX, Yi WB. Influence of calcination and pretreatment conditions on the activity of Co3O4 for CO oxidation. Chin J Catal. 2013;34(2):283.

    CAS  Google Scholar 

  48. Wang AQ, Liu XY, Mou CY, Zhang T. Understanding the synergistic effects of gold bimetallic catalysts. J Catal. 2013;308:258.

    CAS  Google Scholar 

  49. Scirè S, Liotta LF. Supported gold catalysts for the total oxidation of volatile organic compounds. Appl Catal B-Environ. 2012;125:222.

    Google Scholar 

  50. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ. CO Oxidation over supported gold catalysts-“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal. 2001;197(1):113.

    CAS  Google Scholar 

  51. Grisel RJH, Nieuwenhuys BE. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts. Catal Today. 2001;64(1–2):69.

    CAS  Google Scholar 

  52. Liao XM, Liu YM, Chu W, Sall S, Petit C, Pitchon V, Caps V. Promoting effect of AuCu alloying on Au-Cu/CeO2-catalyzed CO oxidation: a combined kinetic and in situ DRIFTS study. J Catal. 2020;382:329.

    CAS  Google Scholar 

  53. Panayotov D, McEntee M, Burrows S, Driscoll D, Tang WJ, Neurock M, Morris J. Infrared studies of propene and propene oxide adsorption on nanoparticulate Au/TiO2. Surf Sci. 2016;652:172.

    CAS  Google Scholar 

  54. Driscoll DM, Tang WJ, Burrows SP, Panayotov DA, Neurock M, McEntee M, Morris JR. Binding sites, geometry, and energetics of propene at nanoparticulate Au/TiO2. J Phys Chem C. 2017;121(3):1683.

    CAS  Google Scholar 

  55. Oran U, Uner D. Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts. Appl Catal B-Environ. 2004;54(3):183.

    CAS  Google Scholar 

  56. Gottfried JM, Schmidt KJ, Schroeder SLM, Christmann K. Spontaneous and electron-induced adsorption of oxygen on Au(110)-(1X2). Surf Sci. 2002;511(1–3):65.

    CAS  Google Scholar 

  57. Feng X, Yang J, Duan XZ, Cao YQ, Chen BX, Chen WY, Dong L, Qian G, Chen D, Yang CH, Zhou XG. Enhanced catalytic performance for propene epoxidation with H2 and O2 over bimetallic Au–Ag/uncalcined titanium silicate-1 catalysts. ACS Catal. 2018;8(9):7799.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300), the National Natural Science Foundation of China (Nos. 21922602 and 21577034), and Fundamental Research Funds for the Central Universities (No. 222201717003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang-Cheng Zhan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2092 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Sun, XQ., Guo, Y. et al. Enhanced catalytic performance for selective oxidation of propene with O2 over bimetallic Au–Cu/SiO2 catalysts. Rare Met. 40, 1056–1066 (2021). https://doi.org/10.1007/s12598-020-01632-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01632-w

Keyword

Navigation