Skip to main content

Advertisement

Log in

Schiff-base-rich g-CxN4 supported PdAg nanowires as an efficient Mott–Schottky catalyst boosting photocatalytic dehydrogenation of formic acid

  • Communication
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Developing an efficient photocatalyst, catalyzing formic acid (FA) dehydrogenation, can satisfy the demand of the H2 energy. Herein, a graphitic carbon nitride (g-CxN4)-based nanosheet (x = 3.2, 3.6 or 3.8) with melem rings conjugated by Schiff-base bond (N=C–C=N) was synthesized, tuning the bandgaps (Eg) of graphitic carbon nitride (g-C3N4) in the range of 1.8 < Eg < 2.7 eV, and grown PdAg nanowires (NWs) on its surface forming an efficient PdAg NWs/g-CxN4 Mott–Schottky heterojunction for enhancing dehydrogenation photocatalysis of FA. The boosting photocatalysis benefits from the Schiff-base bond tuning the Eg of g-C3N4 and strongly coupling from the heterojunction. Among the heterojunction, the Pd5Ag5 NWs/g-C3.6N4 exhibits the best dehydrogenation photocatalysis of FA [turnover frequency (TOF) = 1230 h−1] under visible light (λ > 400 nm) without any additive at 25 °C, which is the best value among ever-reported ones. This work provides a new strategy to boost dehydrogenation photocatalysis of FA, which will be promising for practical application of H2 in future energy field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Loges B, Boddien A, Gartner F, Junge H, Beller M. Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials. Top Catal. 2010;53(13):902.

    Article  CAS  Google Scholar 

  2. Ma ZH, Liu H, Yue M. Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature. Nano Res. 2019;12(12):3085.

    Article  CAS  Google Scholar 

  3. Johnson TC, Morris DJ, Wills M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev. 2010;39(1):81.

    Article  CAS  Google Scholar 

  4. Wang HH, Zhang JF, Chen ZL, Zhang MM, Han XP, Zhong C, Deng YD, Hu WB. Polycrystal Pd nanoparticles: green synthesis and size-dependent performance for formic acid oxidation. Rare Met. 2019;38(2):115.

    Article  CAS  Google Scholar 

  5. Zhou H, Wang XH, Liu HZ, Gao SC, Yan M. Improved hydrogen storage properties of LiBH4 confined with activated charcoal by ball milling. Rare Met. 2019;38(4):321.

    Article  CAS  Google Scholar 

  6. Zhai TT, Xu S, Yang T, Yuan ZM, Zhang YH. Hydrogen storage properties of La1xPrxMgNi3.6Co0.4 (x = 0–0.4) alloys with annealing treatment. Rare Met. 2019;38(9):871.

    Article  CAS  Google Scholar 

  7. Zhang YH, Gong PF, Li LW, Sun H, Feng DC, Guo SH. Hydrogen storage thermodynamics and dynamics of La–Mg–Ni-based LaMg12-type alloys synthesized by mechanical milling. Rare Met. 2019;38(12):1144.

    Article  CAS  Google Scholar 

  8. Wang ZL, Yan JM, Ping Y, Wang HL, Zheng WT, Jiang Q. An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature. Angew Chem Int Ed. 2013;52(16):4406.

    Article  CAS  Google Scholar 

  9. Yu WY, Mullen GM, Flaherty DW, Mullins CB. Selective hydrogen production from formic acid decomposition on Pd–Au bimetallic surfaces. J Am Chem Soc. 2014;136(31):11070.

    Article  CAS  Google Scholar 

  10. Zhang S, Metin O, Su D, Sun SH. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew Chem Int Ed. 2013;52(13):3681.

    Article  CAS  Google Scholar 

  11. Wang H, Zhang J, Chen Z, Zhang M, Han P, Zhong C, Deng Y, Hu W. Size-controllable synthesis and high-performance formic acid oxidation of polycrystalline Pd nanoparticles. Rare Met. 2019;38(2):115.

    Article  CAS  Google Scholar 

  12. Liu H, Yu YS, Yang WW, Lei WJ, Gao MY, Guo SJ. High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate. Nanoscale. 2017;9(27):9305.

    Article  CAS  Google Scholar 

  13. Hu C, Mu X, Fan J, Ma H, Zhao X, Chen G, Zheng NF. Interfacial effects in PdAg bimetallic nanosheets for selective dehydrogenation of formic acid. ChemNanoMat. 2016;2(1):28.

    Article  CAS  Google Scholar 

  14. Jiang Y, Fan X, Xiao X, Qin T, Zhang L, Jiang F, Chen L. Novel AgPd hollow spheres anchored on graphene as an efficient catalyst for dehydrogenation of formic acid at room temperature. J Mater Chem A. 2016;4(2):657.

    Article  CAS  Google Scholar 

  15. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414(6861):353.

    Article  CAS  Google Scholar 

  16. Dutta S, Kim J, Ide Y, Kim JH, Hossain MSA, Bando Y, Yamauchi Y, Wu KCW. 3D network of cellulose-based energy storage devices and related emerging applications. Mater Horizons. 2017;4(4):522.

    Article  CAS  Google Scholar 

  17. Gu X, Lu ZH, Jiang HL, Akita K, Xu Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J Am Chem Soc. 2011;133(31):11822.

    Article  CAS  Google Scholar 

  18. Li Y, Yang Y, Huang JW, Wang L, She HD, Zhong JB, Wang QZ. Preparation of CuS/BiVO4 thin film and its efficaciously photoelectrochemical performance in hydrogen generation. Rare Met. 2019;38(5):428.

    Article  CAS  Google Scholar 

  19. Sun J, Zhang M, Wang ZF, Chen HY, Chen Y, Murakami N, Ohno T. Synthesis of anatase TiO2 with exposed 001 and 101 facets and photocatalytic activity. Rare Met. 2019;38(4):287.

    Article  CAS  Google Scholar 

  20. Yu C, Guo XF, Xi Z, Michelle M, Yin ZY, Shen B, Li JR, Seto C, Sun SH. AgPd nanoparticles deposited on WO2.72 nanorods as an efficient catalyst for one-pot conversion of nitrophenol/nitroacetophenone into benzoxazole/quinazoline. J Am Chem Soc. 2017;139(16):5712.

    Article  CAS  Google Scholar 

  21. Bao SY, Liu H, Liu YQ, Yang WW, Wang YJ, Yu YS, Sun YY, Li KF. Amino-functionalized graphene oxide-supported networked Pd-Ag nanowires as highly efficient catalyst for reducing Cr(VI) in industrial effluent by formic acid. Chemosphere. 2020;257:127245.

    Article  CAS  Google Scholar 

  22. Liu H, Liu XY, Yang WW, Shen M, Geng S, Yu C, Yu YS. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@gC3N4 Mott–Schottky heterojunction. J Mater Chem A. 2019;7(5):2022.

    Article  CAS  Google Scholar 

  23. Kumar S, Dhar DN, Saxena PN. Applications of metal complexes of Schiff bases—a review. J Sci Ind Res. 2009;68(3):181.

    CAS  Google Scholar 

  24. Jürgens B, Irran E, Senker J, Kroll P, Müller H, Schnick W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J Am Chem Soc. 2003;125(34):10288.

    Article  Google Scholar 

  25. Lau VW, Moudrakovski I, Botari T, Weinberger S, Mesch MB, Duppel V, Senker J, Blum V, Lotsch BV. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat Commun. 2016;7(1):12165.

    Article  CAS  Google Scholar 

  26. Li HJ, Sun BW, Sui L, Qian DJ, Chen M. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys Chem Chem Phys. 2015;5(17):3309.

    Article  Google Scholar 

  27. Liu H, Guo Y, Yu YS, Yang WW, Shen M, Liu XY, Geng S, Li JR, Yu C, Yin ZY, Li HB. Surface Pd-rich PdAg nanowires as highly efficient catalysts for dehydrogenation of formic acid and subsequent hydrogenation of adiponitrile. J Mater Chem A. 2018;6(36):17323.

    Article  CAS  Google Scholar 

  28. Liu H, Liu XY, Yu YS, Yang WW, Li J, Feng M, Li HB. Bifunctional networked Ag/AgPd core/shell nanowires for the highly efficient dehydrogenation of formic acid and subsequent reduction of nitrate and nitrite in water. J Mater Chem A. 2018;6(11):4611.

    Article  CAS  Google Scholar 

  29. Liu H, Huang BL, Zhou JH, Wang K, Yu YS, Yang WW, Guo SJ. Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. J Mater Chem A. 2018;6(5):1979.

    Article  CAS  Google Scholar 

  30. Gong Y, Quan X, Yu H, Chen S. Synthesis of Z-scheme Ag2CrO4/Ag/g-C3N4 composite with enhanced visible-light photocatalytic activity for 2, 4-dichlorophenol degradation. Appl Catal B Environ. 2017;219:439.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by Heilongjiang Science Foundation (No. LH2020B006), the National Natural Science Foundation of China (Nos. 51871078, 21871221 and 21602175), the Fundamental Research Funds for the Central Universities (No. 3102017jc01001) and Start-Up Funding for Class D Talent of Xi’an University of Architecture and Technology (No. 1608720038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hu Liu or Yong-Sheng Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, XX., Liu, XY. et al. Schiff-base-rich g-CxN4 supported PdAg nanowires as an efficient Mott–Schottky catalyst boosting photocatalytic dehydrogenation of formic acid. Rare Met. 40, 808–816 (2021). https://doi.org/10.1007/s12598-020-01637-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01637-5

Keywords

Navigation