Skip to main content

Advertisement

Log in

Condensed tannin resins extracted from Pinus radiata bark as a support matrix in carbon nanofiber-reinforced polymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Condensed tannins extracted from the Pinus radiata bark (PRTs) were used as a replacement for phenol in the synthesis of resol-type phenolic resins (FRs) and tested as polymer matrix in carbon nanofiber (CNF)-reinforced composite materials. The PRTs used herein contained a phenol and lignin content of 31 (Eq/L) and 35 (%w/w), respectively. The molecular weights of these polyphenols indicated the presence of 16 flavonoid units. Tannin resins were synthesized, and their characteristics were compared with those of the synthesized FRs using a formaldehyde/phenol ratio of (1.6/1.0), which has the highest total solids content. The results showed that the gel time and useful life of the resins decreased with the addition of the tannins, while there was no significant variation in the degradation temperature with varying FR contents. The mechanical properties of the CNF-reinforced composite materials were determined by DMA, and the results showed an increase of 1000 MPa, due to the better distribution of the fibers in the matrix. The modulus (E') in the reinforced composite materials with tannin resins was 2322 MPa and 1803 MPa without tannins, while modulus E¨ for composite materials doubled for resins with tannins. Tannins improved the dispersion of CNTs and the matrix-filled interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kurimoto Y, Takeda M, Doi S et al (2001) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresour Technol 77:33–40. https://doi.org/10.1016/S0960-8524(00)00136-X

    Article  CAS  PubMed  Google Scholar 

  2. Garlof S, Fukuda T, Mecklenburg M, Smazna D, Kumar Mishra Y, Adelung R, Fiedler B, Schulte K (2016) Electro-mechanical piezoresistive properties of three dimensionally interconnected carbon aerogel (Aerographite)-epoxy composites. Compos Sci Technol 134:226–233. https://doi.org/10.1016/j.compscitech.2016.08.019

    Article  CAS  Google Scholar 

  3. Ates B, Koytepe S, Ulu A, Gurses C, Kumar Thakur V (2020) Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem Rev 120:9304–9362. https://doi.org/10.1021/acs.chemrev.9b00553

    Article  CAS  PubMed  Google Scholar 

  4. Mohammadinejada R, Maleki H, Larraneta E, Fajardo AR, Bakhshian A et al (2019) Status and future scope of plant-based green hydrogels in biomedical engineering. Appl Mater Today 19:213–2465. https://doi.org/10.1016/j.apmt.2019.04.010

    Article  Google Scholar 

  5. Jaramillo AF, Montoya LF, Prabhakar JM et al (2019) Formulation of a multifunctional coating based on polyphenols extracted from the Pine radiata bark and functionalized zinc oxide nanoparticles: Evaluation of hydrophobic and anticorrosive properties. Prog Org Coat 135:191–204. https://doi.org/10.1016/j.porgcoat.2019.06.011

    Article  CAS  Google Scholar 

  6. Montoya LF, Contreras D, Jaramillo AF et al (2019) Study of anticorrosive coatings based on high and low molecular weight polyphenols extracted from the Pine radiata bark. Prog Org Coat 127:100–109. https://doi.org/10.1016/j.porgcoat.2018.11.010

    Article  CAS  Google Scholar 

  7. Petrovic Z (2008) Polyurethanes from Vegetable Oils. Polym Rev 48:109–155. https://doi.org/10.1080/15583720701834224

    Article  CAS  Google Scholar 

  8. Alam M, Akram D, Sharmin E et al (2014) Vegetable oil based eco-friendly coating materials: a review article. Arab J Chem 7:469–479. https://doi.org/10.1016/j.arabjc.2013.12.023

    Article  CAS  Google Scholar 

  9. Shirmohammadli Y, Efhamisisi D, Pizzi A (2018) Tannins as a sustainable raw material for green chemistry: a review. Ind Crops Prod 126:316–332. https://doi.org/10.1016/j.indcrop.2018.10.034

    Article  CAS  Google Scholar 

  10. Papadopoulou E, Chrissafis K (2011) Thermal study of phenol-formaldehyde resin modified with cashew nut shell liquid. Thermochim Acta 512:105–109. https://doi.org/10.1016/j.tca.2010.09.008

    Article  CAS  Google Scholar 

  11. Lúcio DDM, Pimenta AS, Oliveira Castro RV et al (2017) Phenolic adhesives based on eucalyptus pyrolytic oil: effect of urea addition on synthesis and properties. Int J Adhes Adhes 75:57–65. https://doi.org/10.1016/j.ijadhadh.2017.02.018

    Article  CAS  Google Scholar 

  12. Noreen A, Zia KM, Zuber M et al (2016) Bio-based polyurethane: an efficient and environment friendly coating systems: a review. Prog Org Coat 91:25–32. https://doi.org/10.1016/j.porgcoat.2015.11.018

    Article  CAS  Google Scholar 

  13. Filgueira D, Moldes D, Fuentealba C, García DE (2017) Condensed tannins from pine bark: a novel wood surface modifier assisted by laccase. Ind Crops Prod 103:185–194. https://doi.org/10.1016/j.indcrop.2017.03.040

    Article  CAS  Google Scholar 

  14. Ge J-J, Sakai K (1998) Decomposition of polyurethane foams derived from condensed tannin II: hydrolysis and aminolysis of polyurethane foams. J Wood Sci 44:103–105. https://doi.org/10.1007/BF00526253

    Article  CAS  Google Scholar 

  15. Hussin MH, Han Zhang H, Aziz NA et al (2017) Preparation of environmental friendly phenol-formaldehyde wood adhesive modified with kenaf lignin. Beni-Suef Univ J Basic Appl Sci 6:409–418. https://doi.org/10.1016/j.bjbas.2017.06.004

    Article  Google Scholar 

  16. Pas’ko YV, Machneva OP (2019) A technology for producing low-toxicity phenol: formaldehyde resins. Polym Sci—Ser D 12:283–285. https://doi.org/10.1134/S1995421219030183

    Article  Google Scholar 

  17. Aspé E, Fernández K (2011) The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Ind Crops Prod 34:838–844. https://doi.org/10.1016/j.indcrop.2011.02.002

    Article  CAS  Google Scholar 

  18. Aspé E, Fernández K (2011) Comparison of phenolic extracts obtained of Pinus radiata bark from pulp and paper industry and sawmill industry. Maderas Cienc y Tecnol 13:243–252. https://doi.org/10.4067/S0718-221X2011000300001

    Article  CAS  Google Scholar 

  19. Miyazaki J, Hirabayashi Y (2011) Effect of the addition of Acacia mangium bark on thermosetting of phenol-formaldehyde resin. Wood Sci Technol 45:449–460. https://doi.org/10.1007/s00226-010-0342-6

    Article  CAS  Google Scholar 

  20. Mutlu I, Alma MH, Basturk MA, Oner C (2005) Preparation and characterization of brake linings from modified tannin-phenol formaldehyde resin and asbestos-free fillers. J Mater Sci 40:3003–3005. https://doi.org/10.1007/s10853-005-2396-7

    Article  CAS  Google Scholar 

  21. Bocalandro C, Sanhueza V, Gómez-Caravaca AM et al (2012) Comparison of the composition of Pinus radiata bark extracts obtained at bench- and pilot-scales. Ind Crops Prod 38:21–26. https://doi.org/10.1016/j.indcrop.2012.01.001

    Article  CAS  Google Scholar 

  22. Pizzi A, Kueny R, Lecoanet F et al (2009) High resin content natural matrix-natural fibre biocomposites. Ind Crops Prod 30:235–240. https://doi.org/10.1016/j.indcrop.2009.03.013

    Article  CAS  Google Scholar 

  23. Bisanda ETN, Ogola WO, Tesha JV (2003) Characterisation of tannin resin blends for particle board applications. Cem Concr Compos 25:593–598. https://doi.org/10.1016/S0958-9465(02)00072-0

    Article  CAS  Google Scholar 

  24. Barbosa V, Ramires EC, Razera IAT, Frollini E (2010) Biobased composites from tannin-phenolic polymers reinforced with coir fibers. Ind Crops Prod 32:305–312. https://doi.org/10.1016/j.indcrop.2010.05.007

    Article  CAS  Google Scholar 

  25. Moubarik A, Pizzi A, Allal A et al (2009) Cornstarch and tannin in phenol-formaldehyde resins for plywood production. Ind Crops Prod 30:188–193. https://doi.org/10.1016/j.indcrop.2009.03.005

    Article  CAS  Google Scholar 

  26. Jerez M, Pinelo M, Sineiro J, Núñez MJ (2006) Influence of extraction conditions on phenolic yields from pine bark: assessment of procyanidins polymerization degree by thiolysis. Food Chem 94:406–414. https://doi.org/10.1016/j.foodchem.2004.11.036

    Article  CAS  Google Scholar 

  27. Zhao Y, Yan N, Feng M (2010) Characterization of phenol formaldehyde resins derived from liquefied lodgepole pine barks. Int J Adhes Adhes 30:689–695. https://doi.org/10.1016/j.ijadhadh.2010.07.007

    Article  CAS  Google Scholar 

  28. Li D, Hu X, Huang Z et al (2018) Effect of several modifiers on the mechanical and tribological properties of phenol formaldehyde resin. High Perform Polym 30:580–590. https://doi.org/10.1177/0954008317710317

    Article  CAS  Google Scholar 

  29. de Sá SC, de Souza MM, Peres RS et al (2017) Environmentally friendly intumescent coatings formulated with vegetable compounds. Prog Org Coat 113:47–59. https://doi.org/10.1016/j.porgcoat.2017.08.007

    Article  CAS  Google Scholar 

  30. Kim SS, You HN, Hwang IU, Lee DG (2009) Development of the carbon/phenolic composite shoulder bearing. Compos Struct 88:26–32. https://doi.org/10.1016/j.compstruct.2008.02.020

    Article  Google Scholar 

  31. Pincheira G, Montalba C, Gacitua W et al (2016) Study of the effect of amino-functionalized multiwall carbon nanotubes on dry sliding wear resistance properties of carbon fiber reinforced thermoset polymers. Polym Bull 73:2287–2301. https://doi.org/10.1007/s00289-016-1608-4

    Article  CAS  Google Scholar 

  32. Qiao W, Li S, Xu F (2016) Preparation and characterization of a phenol-formaldehyde resin adhesive obtained from bio-ethanol production residue. Polym Polym Compos 24:99–105. https://doi.org/10.1177/096739111602400203

    Article  CAS  Google Scholar 

  33. Paysepar H, Hu Y, Feng S et al (2020) Bio-phenol formaldehyde (BPF) resoles prepared using phenolic extracts from the biocrude oils derived from hydrothermal liquefaction of hydrolysis lignin. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2019.104442

    Article  Google Scholar 

  34. Jaramillo AF, Medina C, Flores P et al (2020) Improvement of thermomechanical properties of composite based on hydroxyapatite functionalized with alkylsilanes in epoxy matrix. Ceram Int 46:8368–8378. https://doi.org/10.1016/j.ceramint.2019.12.069

    Article  CAS  Google Scholar 

  35. Jaramillo AF, Riquelme SA, Medina C et al (2019) Comparative study of the antimicrobial effect of nanocomposites and composite based on poly(butylene adipate-co- terephthalate) using Cu and Cu/Cu 2 O nanoparticles and CuSO 4. Nanoscale Res Lett 14:1–17. https://doi.org/10.1186/s11671-019-2987-x

    Article  CAS  Google Scholar 

  36. Felipe Jaramillo A, Riquelme S, Montoya LF et al (2018) Influence of the concentration of copper nanoparticles on the thermo-mechanical and antibacterial properties of nanocomposites based on poly(butylene adipate- co -terephthalate). Polym Compos. https://doi.org/10.1002/pc.24949

    Article  Google Scholar 

  37. San Juan V, Fernández E, Pincheira G et al (2016) Evaluation of the fill yarns effect on the out-of-plane compressive fatigue behavior for an unidirectional glass fiber reinforced epoxy composite. Compos Struct 138:237–242. https://doi.org/10.1016/j.compstruct.2015.11.061

    Article  Google Scholar 

  38. Medina MC, Rojas D, Flores P et al (2016) Effect of ZnO nanoparticles obtained by arc discharge on thermo-mechanical properties of matrix thermoset nanocomposites. J Appl Polym Sci 133:1–8. https://doi.org/10.1002/app.43631

    Article  CAS  Google Scholar 

  39. Wu C, Chen Z, Wang F et al (2019) Mechanical and drilling properties of graphene oxide modified urea-melamine-phenol formaldehyde composites reinforced by glass fiber. Compos Part B Eng 162:378–387. https://doi.org/10.1016/j.compositesb.2018.12.079

    Article  CAS  Google Scholar 

  40. Li C, Zhang J, Yi Z et al (2016) Preparation and characterization of a novel environmentally friendly phenol-formaldehyde adhesive modified with tannin and urea. Int J Adhes Adhes 66:26–32. https://doi.org/10.1016/j.ijadhadh.2015.12.004

    Article  CAS  Google Scholar 

  41. Ounaies Z, Sun LH, Gao XL et al (2011) Preparation, characterization, and modeling of carbon nanofiber/epoxy nanocomposites. J Nanomater. https://doi.org/10.1155/2011/307589

    Article  Google Scholar 

  42. Li W, Buschhorn ST, Schulte K, Bauhofer W (2011) The imaging mechanism, imaging depth, and parameters influencing the visibility of carbon nanotubes in a polymer matrix using an SEM. Carbon N Y 49:1955–1964. https://doi.org/10.1016/j.carbon.2010.12.069

    Article  CAS  Google Scholar 

  43. Medina C, Fernandez E, Salas A et al (2017) Multiscale characterization of nanoengineered fiber-reinforced composites: effect of carbon nanotubes on the out-of-plane mechanical behavior. J Nanomater. https://doi.org/10.1155/2017/9809702

    Article  Google Scholar 

  44. Raj MM, Raj LM, Dave PN (2012) Glass fiber reinforced composites of phenolic-urea-epoxy resin blends. J Saudi Chem Soc 16:241–246. https://doi.org/10.1016/j.jscs.2011.01.007

    Article  CAS  Google Scholar 

  45. Maya MG, George SC, Jose T et al (2017) Mechanical properties of short sisal fibre reinforced phenol formaldehyde eco-friendly composites. Polym from Renew Resour 8:27–42. https://doi.org/10.1177/204124791700800103

    Article  Google Scholar 

  46. Chauhan S, Kumar A, Patnaik A et al (2009) Mechanical and wear characterization of gf reinforced vinyl ester resin composites with different co-monomers. J Reinf Plast Compos 28:2675–2684. https://doi.org/10.1177/0731684408093823

    Article  CAS  Google Scholar 

  47. Kausar A (2019) Review of fundamentals and applications of polyester nanocomposites filled with carbonaceous nanofillers. J Plast Film Sheet 35:22–44. https://doi.org/10.1177/8756087918783827

    Article  CAS  Google Scholar 

  48. Cardona F, Ku H, Chouzenoux L (2010) Effect of tannin on flexural properties of phenol formaldehyde glycerol reinforced composites: Preliminary results. J Reinf Plast Compos 29:3543–3553. https://doi.org/10.1177/0731684410381152

    Article  CAS  Google Scholar 

  49. Bin FD, Zhang LJ, Min CJ (2009) On the structure and cure acceleration of phenol-urea-formaldehyde resins with different catalysts. Eur Polym J 45:2849–2857. https://doi.org/10.1016/j.eurpolymj.2009.07.005

    Article  CAS  Google Scholar 

  50. Zhang W, Ma Y, Wang C et al (2013) Preparation and properties of lignin-phenol-formaldehyde resins based on different biorefinery residues of agricultural biomass. Ind Crops Prod 43:326–333. https://doi.org/10.1016/j.indcrop.2012.07.037

    Article  CAS  Google Scholar 

  51. Hoong YB, Pizzi A, Chuah LA, Harun J (2015) Phenol-urea-formaldehyde resin co-polymer synthesis and its influence on Elaeis palm trunk plywood mechanical performance evaluated by 13C NMR and MALDI-TOF mass spectrometry. Int J Adhes Adhes 63:117–123. https://doi.org/10.1016/j.ijadhadh.2015.09.002

    Article  CAS  Google Scholar 

  52. Liu J, Wang L, Li J et al (2020) Degradation mechanism of Acacia mangium tannin in NaOH/urea aqueous solution and application of degradation products in phenolic adhesives. Int J Adhes Adhes. https://doi.org/10.1016/j.ijadhadh.2020.102556

    Article  Google Scholar 

  53. Monni J, Niemelä P, Alvila L, Pakkanen TT (2008) Online monitoring of synthesis and curing of phenol-formaldehyde resol resins by Raman spectroscopy. Polymer (Guildf) 49:3865–3874. https://doi.org/10.1016/j.polymer.2008.06.050

    Article  CAS  Google Scholar 

  54. Soto R, Freer J, Baeza J (2005) Evidence of chemical reactions between di- and poly-glycidyl ether resins and tannins isolated from Pinus radiata D. Don bark Bioresour Technol 96:95–101. https://doi.org/10.1016/j.biortech.2003.05.006

    Article  CAS  Google Scholar 

  55. Lee WJ, Lan WC (2006) Properties of resorcinol-tannin-formaldehyde copolymer resins prepared from the bark extracts of Taiwan acacia and China fir. Bioresour Technol 97:257–264. https://doi.org/10.1016/j.biortech.2005.02.009

    Article  CAS  PubMed  Google Scholar 

  56. Wang F, Hu Y (2007) Effect of resin pH on creep behaviour of cured phenol formaldehyde resins. J Cent South Univ Technol 14:306–309. https://doi.org/10.1007/s11771-007-0270-2

    Article  CAS  Google Scholar 

  57. Alonso MV, Oliet M, Domínguez JC et al (2011) Thermal degradation of lignin-phenol-formaldehyde and phenol-formaldehyde resol resins: structural changes, thermal stability, and kinetics. J Therm Anal Calorim 105:349–356. https://doi.org/10.1007/s10973-011-1405-0

    Article  CAS  Google Scholar 

  58. Okhrimenko DV, Thomsen AB, Ceccato M et al (2018) Impact of curing time on ageing and degradation of phenol-urea-formaldehyde binder. Polym Degrad Stab 152:86–94. https://doi.org/10.1016/j.polymdegradstab.2018.04.001

    Article  CAS  Google Scholar 

  59. Lin C-P, Wang L-T, Wang C-J et al (2017) Evaluation of thermal hazards in phenol-formaldehyde polymerization. J Loss Prev Process Ind 49:493–508. https://doi.org/10.1016/j.jlp.2017.05.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the Interdisciplinary Group of Advanced Nanocomposites (Grupo Interdisciplinario de Nanocompuestos Avanzados, GINA) of the Department of Engineering Materials (DIMAT, according to its Spanish acronym), Engineering School of the University of Concepción, for its laboratory of nanospectroscopy (LAB-NANOSPECT). AFJ would like to thank the University of La Frontera. National Agency for Research and Development of Chile (ANID) by project: FONDEQUIP Project N°EQM150139, PIA/APOYO CCTE AFB170007 and Fondecyt initiation 11190358. MFM would like to thank Valentina Lamilla for her enormous support.

Author information

Authors and Affiliations

Authors

Contributions

CF, MFM, PF, and JCM designed the experiments. JCM, AFJ, and CM performed the experiments. DR, ADG, and CF helped for grammar revising and language checking. AFJ, CM, MFM, CF, and PF wrote the paper. All authors discussed the results and commented on the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. F. Meléndrez.

Ethics declarations

Conflict of interest

The authors declare that they have not competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaramillo, A.F., Martinez, J.C., Flores, P. et al. Condensed tannin resins extracted from Pinus radiata bark as a support matrix in carbon nanofiber-reinforced polymers. Polym. Bull. 79, 743–762 (2022). https://doi.org/10.1007/s00289-020-03530-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03530-8

Keywords

Navigation