Skip to main content
Log in

Biological Effects of Cold Atmospheric Pressure Plasma on Skin Cancer

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Cold atmospheric pressure plasmas (CAPPs) increasingly attracted scientific attention in the field of medicine, especially oncology. Because of the surface action of CAPPs, treatment of skin cancers appears to be one of the most promising CAPP applications. This novel controlled CAPP application in the cancer treatment is associated with the selective anticancer characteristics of CAPP. In this literature review, the latest achievements in the field of plasma medicine related to effects of CAPP on the skin cancers were presented. Additionally, typical methods for CAPP generation and application towards skin cancer models were discussed. For a better understanding of complex interactions between reactive species (generated during CAPP operation) and cellular components, biological processes in various experimental models were analyzed. Furthermore, biological impacts of reactive oxygen species and reactive nitrogen species on skin cancer models was evaluated. Finally, prospects for receiving a clinically applicable product and cooperating with conventional therapies or drugs used in skin cancer management were debated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A375:

Human melanoma cell line

A875:

Human melanoma cell line

AC:

Alter current

APPJ:

Atmospheric pressure plasma jet

Ar:

Argon

ATP:

Adenosine triphosphate

AuNPs:

Gold nanoparticles

B16:

Murine melanoma cell line

B16-BL6:

Murine melanoma cell line

B16-F10:

Murine melanoma cell line, highly metastatic

CAPP:

Cold atmospheric pressure plasma

CBA:

Coumarin boronic acid

CCL-2:

Chemokine (C–C motif) ligand 2, also referred MCP-1

CCL-4:

Chemokine (C–C motif) ligands 4

CD 47:

Cluster of differentiation 47

CD 8:

Cluster of differentiation 8

CD 28:

Cluster of differentiation 28

CD 4:

Cluster of differentiation 4

CM-H2DCF-DA:

Chloromethyl derivative of the cell-permeant 2′,7′-dichlorodihydrofluorescein diacetate

CTR:

Calreticulin

CXCL1:

Chemokine (C–X–C motif) ligand 1

CXCL9:

Chemokine (C–X–C motif) ligand 9

DAF-FM:

Amino,4-aminomethyl-20,70-difluorescein, diacetate

DBD:

Dielectric barrier discharge

DCFH-DA:

Dichlorofluorescein diacetate

DMEM:

Dulbecco’s modified eagle’s medium, cell culture medium

DNA:

Deoxyribonucleic acid

Erk 1/2:

Extracellular signal-regulated kinase 1 and 2

Fas:

Tumor necrosis factor receptor superfamily member 6

FasL:

Type-II transmembrane protein, ligand for Fas

FBS:

Fetal bovine serum

FCS:

Fetal calf serum

HBL:

Human epithelial cell line

H2DCFDA:

Cell-permeant 2′,7′-dichlorodihydrofluorescein diacetate

H2O2 :

Hydrogen peroxide

HaCaT:

Human keratinocyte cell line

He:

Helium

Hmel1:

Human malignant melanoma cancer cell line

HV:

High voltage

IC50:

Half maximal inhibitory concentration

ICD:

Immunogenic cell death

IFN-γ:

Interferon gamma

IL-10:

Interleukin 10

IL-12:

Interleukin 12

IL-1β:

Interleukin 1 beta

IL-2:

Interleukin 2

IL-4:

Interleukin 4

iNOS:

Inducible isoform of nitric oxide synthases

KI:

Potassium iodide

kINPen:

Commercially available atmospheric pressure argon plasma jet

L929:

Murine normal fibroblast cell line

LD50:

Median lethal dose

LED:

Light-emitting diode

LN229:

Human glioblastoma cell line

Malme-3M:

Malignant human melanoma cell line

MCP-1:

Monocyte chemoattractant protein 1

MC-1R:

Melanocortin 1 receptor

MHC-1:

Monoclonal antibody MHC class 1

MEM:

Minimum essential medium eagle, cell culture medium

MIG:

Monokine induced by gamma interferon, also referred CXCL9

MTT:

Tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

N2 :

Nitrogen

NaCl:

Sodium chloride

NO:

Nitric oxide

NO* :

Nitric oxide radical

NO2 :

Nitrite ion

NO3 :

Nitrate ion

O:

Atomic oxygen

O2 :

Oxygen

O3 :

Ozone

OH:

Hydroxide

ONOO :

Peroxynitrite

p38 MAPK:

P38 mitogen-activated protein kinases

p53:

Tumor protein p53

PANC-1:

Human pancreatic cancer cell line

PA-TU-8988T:

Primary human pancreatic adenocarcinoma

PBS:

Phosphate-buffered saline

p-FAK:

Anti-phospho- focal adhesion kinase

PTL:

Plasma-treated liquid

PTT:

Plasma-activated tryptophan solution

RF:

Radio frequency

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RPMI 1640:

Roswell park memorial institute cell culture medium

S-DBD:

Surface dielectric barrier discharge

SK-MEL-28:

Human melanoma cell line

TEM:

Transmission electron microscopy

TiO2 :

Titanium dioxide

TGF-β:

Transforming growth factor beta

TNFR1:

Tumor necrosis factor receptor 1

TNF-α:

Tumor necrosis factor α

TNM:

Classification of malignant tumors standard

Trp:

Tryptophan

U87:

Human primary glioblastoma cell line

µ-APPJ:

Micro-atmospheric pressure plasma jet

VEGF:

Vascular endothelial growth factor

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics. CA Cancer J Clin. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  2. Apalla Z, Lallas A, Sotiriou E, Lazaridou E, Ioannides D (2017) Epidemiological trends in skin cancer. Dermatol Pract Concept. https://doi.org/10.5826/dpc.0702a01

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ferretti R, Bhutkar A, McNamara MC, Lees JA (2016) BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance. Genes Dev. https://doi.org/10.1101/gad.267757.115

    Article  PubMed  PubMed Central  Google Scholar 

  4. Turner N, Ware O, Bosenberg M (2018) Genetics of metastasis: melanoma and other cancers. Clin Exp Metastasis. https://doi.org/10.1007/s10585-018-9893-y

    Article  PubMed  Google Scholar 

  5. Rozeman EA, Dekker TJA, Haanen JBAG, Blank CU (2018) Advanced melanoma: current treatment options, biomarkers, and future perspectives. Am J Clin Dermatol. https://doi.org/10.1007/s40257-017-0325-6

    Article  PubMed  Google Scholar 

  6. Daeschlein G, Hillmann A, Gümbel D, Sicher C, von Podewils S, Stope MB, Junger M (2018) Enhanced anticancer efficacy by drug chemotherapy and cold atmospheric plasma against melanoma and glioblastoma cell lines in vitro. IEEE Trans Radiat Plasma Med Sci. https://doi.org/10.1109/TRPMS.2018.2789659

    Article  Google Scholar 

  7. Xiang L, Xu X, Zhang S, Cai D, Dai X (2018) Cold atmospheric plasma conveys selectivity on triple negative breast cancer cells both in vitro and in vivo. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2018.06.001

    Article  PubMed  Google Scholar 

  8. Vodickova A, Schmiedberger J (2018) Utilization of reactive oxygen species generated by electric discharge in biomedical engineering. Plasma Med. https://doi.org/10.1615/plasmamed.2018024524

    Article  Google Scholar 

  9. Vermeylen S, De Waele J, Vanuytsel S, De Backer J, Van der Paal J, Ramakers M, Leyssens K, Marcq E, Van Audenaerde J, Smits LJE, Dewilde S, Bogaerts A (2016) Cold atmospheric plasma treatment of melanoma and glioblastoma cancer cells. Plasma Process Polym. https://doi.org/10.1002/ppap.201600116

    Article  Google Scholar 

  10. Karami-Gadallo L, Ghoranneviss M, Ataie-Fashtami L et al (2017) Enhancement of cancerous cells treatment by applying cold atmospheric plasma and photo dynamic therapy simultaneously. Clin Plasma Med. https://doi.org/10.1016/j.cpme.2017.08.002

    Article  Google Scholar 

  11. Li Y, Kang MH, Uhm HS, Lee GJ, Choi EH, Han I (2017) Effects of atmospheric-pressure non-thermal bio-compatible plasma and plasma activated nitric oxide water on cervical cancer cells. Sci Rep. https://doi.org/10.1038/srep45781

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yan D, Sherman JH, Keidar M (2017) Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. https://doi.org/10.18632/oncotarget.13304

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kang K, Park J, Hyoung S, Oh JY (2014) (12) United States Patent. US 9,539,352 B2

  14. Suwal S, Coronel-Aguilera CP, Auer J, Applegate B, Garner AL, Huang JT (2019) Mechanism characterization of bacterial inactivation of atmospheric air plasma gas and activated water using bioluminescence technology. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2018.01.007

    Article  Google Scholar 

  15. Hertrich SM, Boyd G, Sites J, Niemira BA (2017) Cold plasma inactivation of salmonella in prepackaged, mixed salads is influenced by cross-contamination sequence. J Food Prot. https://doi.org/10.4315/0362-028X.JFP-17-242

    Article  PubMed  Google Scholar 

  16. Han D, Cho JH, Lee RH, Bang W, Park K, Kim MS, Shim JH, Chae JI, Moon SY (2017) Antitumorigenic effect of atmospheric-pressure dielectric barrier discharge on human colorectal cancer cells via regulation of Sp1 transcription factor. Sci Rep. https://doi.org/10.1038/srep43081

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mohades S, Laroussi M, Sears J, Barekzi N, Razavi H (2015) Evaluation of the effects of a plasma activated medium on cancer cells. Phys Plasmas. https://doi.org/10.1063/1.4933367

    Article  Google Scholar 

  18. Iseni S, Schmidt-Bleker A, Winter J, Weltmann KD, Reuter S (2014) Atmospheric pressure streamer follows the turbulent argon air boundary in a MHz argon plasma jet investigated by OH-tracer PLIF spectroscopy. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/47/15/152001

    Article  Google Scholar 

  19. Lu X, Xiong Q, Xiong Z, Hu J, Zhou F, Gong W, Xian Y, Zou C, Tang Z, Jiang Z, Pan Y (2009) Propagation of an atmospheric pressure plasma plume. J Appl Phys. https://doi.org/10.1063/1.3079503

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tan TY, Zhang L, Neoh SC, Lim CP (2018) Intelligent skin cancer detection using enhanced particle swarm optimization. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2018.05.042

    Article  Google Scholar 

  21. Dobrynin D, Fridman G, Friedman G, Fridman A (2012) Deep penetration into tissues of reactive oxygen species generated in floating-electrode dielectric barrier discharge (FE-DBD): an in vitro agarose gel model mimicking an open wound. Plasma Med. https://doi.org/10.1615/PlasmaMed.2013006218

    Article  Google Scholar 

  22. Szili EJ, Hong SH, Oh JS, Gaur N, Short RD (2018) Tracking the penetration of plasma reactive species in tissue models. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2017.07.012

    Article  PubMed  Google Scholar 

  23. Naito K, Tachikawa T, Fujitsuka M, Majima T (2008) Real-time single-molecule imaging of the spatial and temporal distribution of reactive oxygen species with fluorescent probes: applications to TiO2 photocatalysts. J Phys Chem C. https://doi.org/10.1021/jp076335l

    Article  Google Scholar 

  24. Kawasaki T, Sato A, Kusumegi S, Kudo A, Sakanoshita T, Tsurumaru T, Uchida G, Koga K, Shiratani M (2016) Two-dimensional concentration distribution of reactive oxygen species transported through a tissue phantom by atmospheric-pressure plasma-jet irradiation. Appl Phys Express. https://doi.org/10.7567/APEX.9.076202

    Article  Google Scholar 

  25. Mitsugi F, Kusumegi S, Kawasaki T (2019) Visualization of ROS distribution generated by atmospheric plasma jet. IEEE Trans Plasma Sci. https://doi.org/10.1109/TPS.2018.2858807

    Article  Google Scholar 

  26. Liu D, He T, Liu Z, Wang S, Liu Z, Rong M, Kong MG (2018) Spatial-temporal distributions of ROS in model tissues treated by a He + O2 plasma jet. Plasma Process Polym. https://doi.org/10.1002/ppap.201800057

    Article  Google Scholar 

  27. Duan J, Lu X, He G (2017) On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue. Phys Plasmas. https://doi.org/10.1063/1.4990554

    Article  Google Scholar 

  28. Nie L, Yang Y, Duan J, Sun F, Lu X, He G (2018) Effect of tissue thickness and liquid composition on the penetration of long-lifetime reactive oxygen and nitrogen species (RONS) generated by a plasma jet. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/aad427

    Article  Google Scholar 

  29. Xu GM, Liu JR, Wu YM, Shi XM, Zhang GJ (2018) Low-temperature atmospheric pressure helium plasma jet damages malignant melanoma cells by inducing oxidative stress. IEEE Trans Plasma Sci. https://doi.org/10.1109/TPS.2018.2856122

    Article  Google Scholar 

  30. Li XY, Feng Z, Pu SC, Yang Y, Shi XM, Xu Z (2018) Cold atmospheric plasma jet-generated oxidized derivatives of tryptophan and their selective effects on murine melanoma and fibroblast cells. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-018-9910-6

    Article  Google Scholar 

  31. Bekeschus S, Rödder K, Fregin B, Otto O, Lippert M, Weltmann KD, Wende K, Schmidt A, Gandhirajan RK (2017) Toxicity and Immunogenicity in Murine Melanoma following Exposure to Physical Plasma-Derived Oxidants. Oxid Med Cell Longev. https://doi.org/10.1155/2017/4396467

    Article  PubMed  PubMed Central  Google Scholar 

  32. Azzariti A, Iacobazzi RM, Di Fonte R, Porcelli L, Gristina R, Fracassi F, Trizino I, Silvestris N, Guida G, Tommasi S, Sardella E (2019) Plasma-activated medium triggers cell death and the presentation of immune activating danger signals in melanoma and pancreatic cancer cells. Sci Rep. https://doi.org/10.1038/s41598-019-40637-z

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xia J, Zeng W, Xia Y, Wang B, Xu D, Liu D, Kong MG, Dong Y (2019) Cold atmospheric plasma induces apoptosis of melanoma cells via Sestrin2-mediated nitric oxide synthase signaling. J Biophotonics. https://doi.org/10.1002/jbio.201800046

    Article  PubMed  Google Scholar 

  34. Rödder K, Moritz J, Miller V, Weltmann KD, Metelmann HR, Gandhirajan R, Bekeschus S (2019) Activation of murine immune cells upon co-culture with plasma-treated B16F10 melanoma cells. Appl Sci. https://doi.org/10.3390/app9040660

    Article  Google Scholar 

  35. Yadav DK, Adhikari M, Kumar S, Ghimire B, Han I, Kim MH, Choi EH (2020) Cold atmospheric plasma generated reactive species aided inhibitory effects on human melanoma cells: an in vitro and in silico study. Sci Rep. https://doi.org/10.1038/s41598-020-60356-0

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cheng X, Sherman J, Murphy W, Ratovitski E, Canady J, Keidar M (2014) The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS ONE. https://doi.org/10.1371/journal.pone.0098652

    Article  PubMed  PubMed Central  Google Scholar 

  37. Adhikari M, Adhikari B, Ghimire B, Baboota S, Choi EH (2020) Cold atmospheric plasma and silymarin nanoemulsion activate autophagy in human melanoma cells. Int J Mol Sci. https://doi.org/10.3390/ijms21061939

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mashayekh S, Rajaee H, Akhlaghi M, Shokri B, Hassan ZM (2015) Atmospheric-pressure plasma jet characterization and applications on melanoma cancer treatment (B/16-F10). Phys Plasmas. https://doi.org/10.1063/1.4930536

    Article  Google Scholar 

  39. Shi XM, Chang ZS, Wu XL, Zhang GJ, Peng ZY, Dong ZY, Shao XJ (2013) Inactivation effect of argon atmospheric pressure low-temperature plasma jet on murine melanoma cells. Plasma Process Polym. https://doi.org/10.1002/ppap.201300018

    Article  Google Scholar 

  40. Choi BB, Kim MS, Song KW, Kim UK, Hong JW, Lee HJ, Kim GC (2015) Targeting NEU protein in melanoma cells with non-thermal atmospheric pressure plasma and gold nanoparticles. J Biomed Nanotechnol. https://doi.org/10.1166/jbn.2015.1999

    Article  PubMed  Google Scholar 

  41. Choi BBR, Choi JH, Hong JW, Song KW, Lee HJ, Kim UK, Kim GC (2017) Selective killing of melanoma cells with non-thermal atmospheric pressure plasma and p-FAK antibody conjugated gold nanoparticles. Int J Med Sci. https://doi.org/10.7150/ijms.20104

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lin A, Gorbanev Y, De Backer J, Von Loenhout J, Van Boxem W, Lemiere F, Cos P, Dewilde S, Smits E, Bogaerts A (2019) Non-thermal plasma as a unique delivery system of short-lived reactive oxygen and nitrogen species for immunogenic cell death in melanoma cells. Adv Sci. https://doi.org/10.1002/advs.201802062

    Article  Google Scholar 

  43. Chauvin J, Judée F, Yousfi M, Vicendo P, Merbahi N (2017) Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Sci Rep. https://doi.org/10.1038/s41598-017-04650-4

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yan D, Xu W, Yao X, Lin L, Sherman JH, Keidar M (2018) The cell activation phenomena in the cold atmospheric plasma cancer treatment. Sci Rep. https://doi.org/10.1038/s41598-018-33914-w

    Article  PubMed  PubMed Central  Google Scholar 

  45. Damia G, D’Incalci M (2009) Contemporary pre-clinical development of anticancer agents—what are the optimal preclinical models? Eur J Cancer. https://doi.org/10.1016/j.ejca.2009.08.008

    Article  PubMed  Google Scholar 

  46. Fraszczak J, Trad M, Janikashvili N, Cathelin D, Lakomy D, Granci V, Morizot A, Audia S, Micheau O, Lagrost L, Katsanis E, Solary E, Larmonier N, Bonnotte B (2010) Peroxynitrite-dependent killing of cancer cells and presentation of released tumor antigens by activated dendritic cells. J Immunol. https://doi.org/10.4049/jimmunol.0900831

    Article  PubMed  Google Scholar 

  47. Chen PR, Wang MC, Chuang YJ (2018) Use of low temperature cold atmospheric plasma in the treatment of melanoma cells. Proceedings of the 2018 8th International Conference on Bioscience, Biochemistry and Bioinformatics. https://doi.org/10.1145/3180382.3180389

    Article  Google Scholar 

  48. Saadati F, Mahdikia H, Abbaszadeh HA, Abdollahifar MA, Khoramgah MS, Shokri B (2018) Comparison of direct and indirect cold atmospheric–pressure plasma methods in the B16F10 melanoma cancer cells treatment. Sci Rep. https://doi.org/10.1038/s41598-018-25990-9

    Article  PubMed  PubMed Central  Google Scholar 

  49. Joshi MS, Ponthier JL, Lancaster JR (1999) Cellular antioxidant and pro-oxidant actions of nitric oxide. Free Radic Biol Med. https://doi.org/10.1016/S0891-5849(99)00179-3

    Article  PubMed  Google Scholar 

  50. Lietz AM, Kushner MJ (2018) Molecular admixtures and impurities in atmospheric pressure plasma jets. J Appl Phys. https://doi.org/10.1063/1.5049430

    Article  Google Scholar 

  51. Adachi T, Tanaka H, Nonomura S, Hara H, Kondo S, Hori M (2015) Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial–nuclear network. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2014.11.014

    Article  PubMed  Google Scholar 

  52. Yeagle PL (1991) Modulation of membrane function by cholesterol. Biochimie. https://doi.org/10.1016/0300-9084(91)90093-G

    Article  PubMed  Google Scholar 

  53. Eichholzer M, Stähelin HB, Gutzwiller F, Ludin E, Bernasconi F (2000) Association of low plasma cholesterol with mortality for cancer at various sites in men: 17-y follow-up of the prospective Basel study. Am J Clin Nutr. https://doi.org/10.1093/ajcn/71.2.569

    Article  PubMed  Google Scholar 

  54. Gao L, Gao Y, Li X, Howell P, Kumar R, Su X, Vlassov AV, Piazza GA, Riker AI, Sun D, Xi Y (2012) Aquaporins mediate the chemoresistance of human melanoma cells to arsenite. Mol Oncol. https://doi.org/10.1016/j.molonc.2011.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fisher JA (2015) Feeding and bleeding: the institutional banalization of risk to healthy volunteers in phase I pharmaceutical clinical trials. Sci Technol Human Values. https://doi.org/10.1177/0162243914554838

    Article  PubMed  PubMed Central  Google Scholar 

  56. Metelmann HR, Nedrelow DS, Seebauer C, Schuster M, von Woedtke T, Weltmann KD, Kindler S, Metelmann PH, Finkelstein SE, von Hoff DD, Podmelle F (2015) Head and neck cancer treatment and physical plasma. Clin Plasma Med. https://doi.org/10.1016/j.cpme.2015.02.001

    Article  Google Scholar 

Download references

Acknowledgements

The presented research was financed by the statutory activity from the Polish Ministry of Science and Higher Education dedicated to the Faculty of Chemistry of Wroclaw University of Science and Technology. A.D. is supported by the Polish Ministry of Science and Higher Education. This work was supported by the statutory activity subsidy from the European Social Fund for the interdisciplinary doctoral studies and internship programme—BioTechNan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dominik Terefinko or Anna Dzimitrowicz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terefinko, D., Dzimitrowicz, A., Bielawska-Pohl, A. et al. Biological Effects of Cold Atmospheric Pressure Plasma on Skin Cancer. Plasma Chem Plasma Process 41, 507–529 (2021). https://doi.org/10.1007/s11090-020-10150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10150-7

Keywords

Navigation