Skip to main content

Advertisement

Log in

Modelling the transport of sediment discharged by Colombian rivers to the southern Caribbean Sea

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The three-dimensional transport of sediments released by the main rivers in the Colombian Caribbean basin is investigated using numerical model simulations. Different types of sediments (fine sands, very fine sands and coarse silts) were tracked by implementing SedimentDrift software, a subclass of the OpenDrift open-source trajectory framework. The simulations were forced with climatological winds from ERA-5 and currents from the Copernicus Marine Environment Monitoring Service (CMEMS). In situ measurements from the area were utilised in the evaluation of the forcing fields. The diagnostic analysis of ERA-5 and CMEMS at the evaluated stations in the Colombian basin led to the conclusion that these datasets are reliable; hence, they can be used for several oceanographic and coastal engineering studies. The sediment transport of non-cohesive particles at each river mouth is subject to the variability of local hydrodynamics, morphological features and the grain size, which determines the settling velocities. These factors were considered and evaluated in detail. Given the lack of available in situ information, the performance of the Lagrangian model is evaluated by comparing the resulting simulations with previous studies reported in the area for river plume dynamics. However, this study presents an initial analysis of the pathways that sediments of different sizes follow, from the river mouth to the seafloor. This approach is convenient given that the Colombian rivers deliver large amounts of sediment of various grain sizes, there are insufficient in situ data to assess the seasonal cycle of sediment transport and many aspects of the sediment dynamics are not fully resolved. The resulting simulations provide evidence of the importance of high-resolution ocean current data, given that this is the main factor determining the trajectories and dispersion patterns at seasonal scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used in this study are mainly third-party data. Most of the data used in this paper allow public access (credits and URL in the paper). These datasets are from international, well-known databases. In situ data used to validate the re-analyses models belong to Ecopetrol and do not have public access.

References

  • Alvarado M (2005) Cartagena y el plan de restauración ambiental del Canal del Dique, y Barranquilla y las obras de profundización del canal navegable de acceso a la zona portuaria: Visión general. In: Restrepo JD (ed) Los Sedimentos del Río Magdalena: Reflejo de la Crisis Ambiental. EAFIT University Press, Medellín, pp 217–254

    Google Scholar 

  • Amador JA (1998) A climatic feature of tropical Americas. The trade wind easterly jet. Top Meteor Oceanogr 5: 91–102. Available at the Instituto Meteorológico Nacional (http://www.imn.ac.cr/publicaciones/index.html), San José, Costa Rica

  • Amador JA (2008) The intra-Americas sea low-level jet. Overview and future research. Trends and directions in climate research. Ann N Y Acad Sci 1146:153–188. https://doi.org/10.1196/annals.1446.012

    Article  Google Scholar 

  • Appendini CM, Torres-Freyermuth A, Salles P, López-González J, Mendoza ET (2014) Wave climate and trends for the Gulf of Mexico: a 30-yr wave hindcast. J Clim 27:1619–1632. https://doi.org/10.1175/JCLI-D-13-00206.1

    Article  Google Scholar 

  • Beyer WH (ed) (1987) CRC standard mathematical tables, 28th edn. CRC Press, Boca Raton, pp 123–124

    Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic-Ocean simulated by a general-circulation model with 2 different mixed-layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Breivik Ø, Allen AA (2008) An operational search and rescue model for the Norwegian Sea and the North Sea. J Mar Syst 69:99–113. https://doi.org/10.1016/j.jmarsys.2007.02.010

    Article  Google Scholar 

  • Breivik Ø, Bidlot J-R, Janssen PA (2016) A Stokes drift approximation based on the Phillips spectrum. Ocean Model 100:49–56. https://doi.org/10.1016/j.ocemod.2016.01.005

    Article  Google Scholar 

  • Camargo J, Silva M, Ferreira Júnior A, Araújo T (2019) Marine geohazards: a bibliometric-based review. Geosciences 9(2):100. https://doi.org/10.3390/geosciences9020100

    Article  Google Scholar 

  • Campbell KJ (1999) Deepwater geohazards: how significant are they? Lead Edge 18(4):514–519

    Article  Google Scholar 

  • Clare MA, Vardy ME, Cartigny MJB, Talling PJ, Himsworth MD, Dix JK, Harris JM, Whitehouse RJS, Belal M (2017) Direct monitoring of active geohazards: emerging geophysical tools for deep-water assessments. Near Surf Geophys 15:427–444. https://doi.org/10.3997/1873-0604.2017033

    Article  Google Scholar 

  • CMEMS (2018) Product user manual for the Global Ocean Sea Physical Analysis and Forecasting Products GLOBAL_ANALYSIS_FORECAST_PHY_001_024. Version 3.2 (10/04/2018). EU Copernicus Marine Service. Ref: CMEMS-GLO-PUM-001-024. 16 pp

  • CMEMS (2019) Quality information document for Global Sea Physical Analysis and Forecasting Product Global_Analysis_Forecast_Phy_001_024. Issue 2.1 (30/04/2019). EU Copernicus Marine Service. Ref: CMEMS-GLO-QUID-001-024. 81 pp

  • Coleman JM (1981) Deltas: processes of deposition and models for exploration, 2nd edn. Burgess Publishing Company, Minneapolis, p 102

    Google Scholar 

  • Collins MB, Balson PS (2007) Coastal and shelf sediment transport: an introduction. In: Balson, Collins (eds) Coastal and Shelf Sediment Transport, Geological Society special publication No. 274, London, pp 1–6

  • Copernicus Climate Change Service (C3S) (2017) ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate . Copernicus Climate Change Service Climate Data Store (CDS). Access the 05/01/2019. https://cds.climate.copernicus.eu/cdsapp#!/home

  • Corell H, Döös K (2013) Difference in particle transport between two coastal areas in the Baltic Sea investigated with high-resolution trajectory modeling. AMBIO 42:455–463. https://doi.org/10.1007/s13280-013-0397-3

    Article  Google Scholar 

  • Cravatte S, Madec G, Izumo T, Menkes C, Bozec A (2007) Progress in the 3-D circulation of the eastern equatorial Pacific in a climate. Ocean Model 17:28–48

    Article  Google Scholar 

  • Dagestad K-F, Röhrs J, Breivik Ø, Ådlandsvik B (2018) OpenDrift v1.0: a generic framework for trajectory modelling. Geosci Model Dev 11:1405–1420. https://doi.org/10.5194/gmd-11-1405-2018

    Article  Google Scholar 

  • Dean RG, Dalrymple RA (2002) Coastal processes with engineering applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Devis-Morales A, Montoya-Sánchez RA, Bernal G, Osorio A (2017) Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications. Appl Ocean Res 69:10–26. https://doi.org/10.1016/j.apor.2017.09.012

    Article  Google Scholar 

  • Donnelly TW (1994) The Caribbean Sea floor. Caribbean geology: an introduction U.W.I. Publishers’ Association, Kingston. Chapter 3 41–64

  • Dyer KR (1998) Estuaries: a physical introduction, 2nd edn. Wiley, p 201 ISBN: 978-0-471-97471-0

  • Ercilla G, Alonso B, Estrada F, Chiocci FL, Baraza J, Farran M (2002) The Magdalena turbidite system (Caribbean Sea): present day morphology and architecture model. Mar Geol 185:303–318

    Article  Google Scholar 

  • Escobar CA, Velásquez-Montoya L (2018) Modeling the sediment dynamics in the gulf of Urabá, Colombian Caribbean Sea. Ocean Eng 147:476–487. https://doi.org/10.1016/j.oceaneng.2017.10.055

    Article  Google Scholar 

  • European Marine Board (2019) European Marine Board Expert Working Group. Marine Geohazards and the Blue Economy Terms of Reference August 2019 11 p Available at: https://www.marineboardeu/sites/marineboardeu/files/public/New%20website/Foresight/Geohazards/EMB_ToR_geohazards_August2019.pdf. Access date: 2nd July 2020

  • Ferguson RI, Church M (2004) A simple universal equation for grain settling velocity. J Sediment Res 74(6):933–937. https://doi.org/10.1306/051204740933

    Article  Google Scholar 

  • FUGRO Global Environmental & Ocean Sciences, Inc (2017) Metocean monitoring buoy phase 1 offshore Colombia. Data Report. 13 December 2015 to 31 May 2016. Fugro Report No.: C16557/0002/R0. Shell E&P Colombia 358 pp

  • Galloway WE (1975) Processes framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. En: Broussard ML (ed.). Deltas: models for exploration. Houston Geological Society, Houston, 87–98

  • García C (2007) Atlas del golfo de Urabá: Una mirada al Caribe de Antioquia y Chocó. 1a Edición. Santa Marta, Colombia: Instituto de Investigaciones Marinas y Costeras (Invemar) y Gobernación de Antioquia. Serie de Publicaciones Especiales de Invemar No 12, 2007, 180 p. ISBN: 978-958-98104-3-9

  • GEBCO Compilation Group (2019) GEBCO 2019 Grid (https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e)

  • Hersbach H, Bell W, Berrisford P, Horányi A, J M-S, Nicolas J, Radu R, Schepers D, Simmons A, Soci C, Dee D (2019) Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsl 159:17–24. https://doi.org/10.21957/vf291hehd7

    Article  Google Scholar 

  • Higgins A, Restrepo JC, Ortíz JC, Pierini JO, Otero L (2016) Suspended sediment transport in the Magdalena river (Colombia, South America): hydrologic regime, rating parameters and effective discharge variability. Int J Sediment Res 31:25e35–25e35. https://doi.org/10.1016/j.ijsrc.2015.04.003

    Article  Google Scholar 

  • Higgins A, Restrepo JC, Otero L, Ortiz JC, Conde M (2017) Distribución vertical de sedimentos en suspensión en la zona de desembocadura del Río Magdalena, Colombia. Lat Am J Aquat Res 45(4):724–736. https://doi.org/10.3856/vol45-issue4-fulltext-9

    Article  Google Scholar 

  • Hori K, and Saito Y (2005) Classification, architecture and evolution of large river deltas. En: Gupta A (ed.). Large Rivers Geomorphology and Management. Wiley, 85–116

  • INVEMAR-GEO (2015) Sedimentary contributions of the Sinú River and its relationship with the coastal processes of the Department of Cordoba. Phase I. Technical Report. Santa Marta, Colombia, 85 pp. Available for download in: http: //www.INVEMAR.org.co

  • INVEMAR-GEO (2016) Sedimentary contributions of the Sinú River and its relationship with the coastal processes of the Department of Cordoba. Phase II. Technical Report. Santa Marta, Colombia, 104 pp. Available for download in: http: //www.INVEMAR.org.co

  • Kjerfve B (1981) Tides of the Caribbean Sea. J Geophys Res 86(C5):4243–4247. https://doi.org/10.1029/JC086iC05p04243

    Article  Google Scholar 

  • Klingebiel A, Vernette G (1979) Estudio batimétrico y sedimentológico en la plataforma continental entre Cartagena y la desembocadura del río Magdalena (Colombia). Boletín Científico CIOH 5:1–15

    Google Scholar 

  • Leslie SC, Mann P (2016) Giant submarine landslides on the Colombian margin and tsunami risk in the Caribbean Sea. Earth Planet Sci Lett 449:382–394, ISSN 0012-821X. https://doi.org/10.1016/j.epsl.2016.05.040

    Article  Google Scholar 

  • Lévy M, Estublier A, Madec G (2001) Choice of an advection scheme for biogeochemical models. Geophys Res Lett 28:3725–3728. https://doi.org/10.1029/2001GL012947

    Article  Google Scholar 

  • López-Marrero T, Hampton J, Vergara E, Quiroz J, Simovic K, Arevalo H (2013) Hazards and disasters in the insular Caribbean: a systematic literature review. Caribb Geogr 18:85–105

    Google Scholar 

  • Madec G and the NEMO team (2008) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No. 27 ISSN, 1288–1619

  • Mathew R, Winterwerp JC (2020) Sediment dynamics and transport regimes in a narrow microtidal estuary. Ocean Dyn 70:1–28. https://doi.org/10.1007/s10236-020-01345-9

    Article  Google Scholar 

  • Méheux K, Dominey-Howes D, Lloyd K (2007) Natural Hazard impacts in small islands developing states: a review of current knowledge and future research needs. Nat Hazards 40:429–446

    Article  Google Scholar 

  • Mejía JF, Mesa O, Poveda G, Vélez JI, Hoyos CD, Mantilla R, Barco J, Cuartas A, Montoya MI, Botero B (1999) Distribución espacial y ciclos anual y semianual de la precipitación en Colombia. DYNA Revista de la Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín. N°127. pp. 7-24

  • Milliman JD (1990) Fluvial sediment in coastal seas: flux and fate. Nat Resour (Unesco) 26:12–22

    Google Scholar 

  • Milliman JD, Syvitski PM (1992) Geomorphic/tectonic control of sediment transport to the ocean: the importance of small mountainous rivers. J Geol 100:525–544

    Article  Google Scholar 

  • Montoya LJ, Toro-Botero FM, Gómez-Giraldo A (2017) Study of Atrato river plume in a tropical estuary: effects of the wind and tidal regime on the Gulf of Urabá, Colombia. DYNA 84(200):367–375

    Article  Google Scholar 

  • Montoya-Sánchez RA, Devis-Morales A, Bernal G, Poveda G (2018) Seasonal and interannual variability of the mixed layer heat budget in the Caribbean Sea. J Mar Syst 187:111–127

    Article  Google Scholar 

  • Mooers CNK, Maul GA (1998) Intra-Americas sea circulation. In: Robinson AR, Brink KH (eds) The sea, vol. 11. Wiley, New York, pp 183–208

    Google Scholar 

  • Morrison JM, Nowlin WD Jr (1982) general distributions of water masses within the eastern Caribbean Sea during the winter of 1972 and fall of 1973. J Geophys Res 87:4207–4229

    Article  Google Scholar 

  • Moskalski SM, Torres R (2012) Influences of tides, weather, and discharge on suspended sediment concentration. Cont Shelf Res 37:36–45. https://doi.org/10.1016/j.csr.2012.01.015

    Article  Google Scholar 

  • Olson CJ, Becker JJ, and Sandwell DT (2014) A new global bathymetry map at 15 arcsecond resolution for resolving seafloor fabric: SRTM15_PLUS, AGU Fall Meeting Abstracts 2014

  • Orton GJ, Reading HG (1993) Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology 40:475–512

    Article  Google Scholar 

  • Pinto L, Fortunato AB, Zhang Y, Oliveira A, Sancho FEP (2012) Development and validation of a three-dimensional morphodynamic modelling system for non-cohesive sediments. Ocean Model. https://doi.org/10.1016/j.ocemod.2012.08.005

  • Poveda G (2004) La hidroclimatología de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 28(197):201–222

  • Preisendorfer R (1988) Principal Component Analysis in Meteorology and Oceanography. Developments in Atmospheric Science, 17, Ed. Elsevier Science Publishers B.V

  • Pujos M, Javelaud O (1991) Depositional facies of a mud shelf between the Sinú river and the Darien Gulf (Caribbean coast of Columbia): environmental factors control its sedimentation and origin of deposits. Cont Shelf Res 11(7):601–623

    Article  Google Scholar 

  • Pujos M, Pagliardini JL, Steer R, Vernette G, Weber O (1986) Influence of the north Colombian Counter-current on the circulation of the continental platform: its action on the dispersion of effluents in suspension from the Magdalena River. Bull Sci Cent Invest Oceanogr Hydrogr (CIOH) 6:3–15. https://doi.org/10.26640/01200542.6.3_15

    Article  Google Scholar 

  • Raudkivi AJ (1990) Loose boundary hydraulics, 3rd edn. Pergamon, Oxford, p 533

    Google Scholar 

  • Restrepo JC (2014) Dinámica Sedimentaria en Deltas Micromareales – Estratificados de Alta Descarga: Delta del Río Magdalena (Colombia – Mar Caribe). Doctor in Marine Science Dissertation, Universidad del Norte. Colombia

  • Restrepo JD, Kjerfve B (2000) Magdalena River: interannual variability (1975-1995) and revised water discharge and sediment load estimates. J Hydrol 235:137–149

    Article  Google Scholar 

  • Restrepo JD, Kjerfve B (2004) The Pacific and Caribbean Rivers of Colombia: water discharge, sediment transport and dissolved loads. In: Drude de Lacerda L, Santelli RE, Duursma EK, Abrão JJ (eds) Environmental geochemistry in tropical and subtropical environments. Environmental Science. Springer, Berlin, Heidelberg

    Google Scholar 

  • Restrepo JD, López SA (2008) Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America. J S Am Earth Sci 25:1–21. https://doi.org/10.1016/j.jsames.2007.09.002

    Article  Google Scholar 

  • Restrepo JD, and Syvitski, JPM (2006) Assessing the effect of natural controls and land use change on sediment yield in a major Andean River: the Magdalena Drainage Basin, Colombia, in Journal of the Human Environment. April 2006, https://doi.org/10.1579/0044-7447(2006)35[65:ATEONC]2.0.CO;2

  • Restrepo JD, Kjerfve B, Hermelín M, Restrepo JC (2006) Factors controlling sediment yield in a major south American Drainage Basin: the Magdalena river, Colombia. J Hydrol 316:213e232–213e232. https://doi.org/10.1016/j.jhydrol.2005.05.002

    Article  Google Scholar 

  • Restrepo JC, Ortiz JC, Pierini J, Schrottke K, Maza M, Otero L, Aguirre J (2014) Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): magnitude, variability and recent changes. J Hydrol 509:266–281. https://doi.org/10.1016/j.jhydrol.2013.11.045

    Article  Google Scholar 

  • Restrepo JC, Schrottke K, Traini C, Ortíz JC, Orejarena A, Otero L, Higgins A, Marriaga L (2016) Sediment transport and geomorphological change in a high-discharge tropical delta (Magdalena River, Colombia): insights from a period of intense change and human intervention (1990–2010). J Coast Res 32(3):575–589. https://doi.org/10.2112/JCOASTRES-D-14-00263.1

    Article  Google Scholar 

  • Restrepo JC, Orejarena AF, Torregroza AC (2017) Suspended sediment load in Northwestern South America (Colombia): a new view on variability and fluxes into the Caribbean Sea. J S Am Earth Sci 80:340–352. https://doi.org/10.1016/j.jsames.2017.10.005

    Article  Google Scholar 

  • Restrepo JC, Schrottke K, Traini C, Bartholomaec A, Ospino A, Ortiz JC, Otero L, Orejarena A (2018) Estuarine and sediment dynamics in a microtidal tropical estuary of high fluvial discharge: Magdalena River (Colombia, South America). Mar Geol 398:86–98. https://doi.org/10.1016/j.margeo.2017.12.008

    Article  Google Scholar 

  • Roullet G, Madec G (2000) Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J Geophys Res 105(23927–23942):2000

    Google Scholar 

  • Salinas JA, Maya ME, Hernández C (2019) Wind waves associated to the Caribbean low-level jet. EMS Annual Meeting Abstracts 16:EMS2019–EMS2220

    Google Scholar 

  • Serrano-Suarez BE (2004) The Sinú river delta on the northwestern Caribbean coast of Colombia: bay infilling associated with delta development. J S Am Earth Sci 16:623–631. https://doi.org/10.1016/j.jsames.2003.10.005

    Article  Google Scholar 

  • Shrestha PL, Blumberg AF (2005) Cohesive sediment transport. In: Schwartz ML (ed) Encyclopedia of coastal science. Encyclopedia of Earth Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3880-1_59

    Chapter  Google Scholar 

  • Soulsby RL, Mead CT, Wild BR, Wood MJ (2011) Lagrangian model for simulating the dispersal of sand-sized particles in coastal waters. J Waterw Port Coast Ocean Eng 137:123–131. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000074

    Article  Google Scholar 

  • Stokes GG (1851) On the effect of internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society. 9, part ii: 8–106. The formula for terminal velocity appears on p. [52], equation (127)

  • Tabares N, Soltau JM, and Diaz J (1996) Caracterización geomorfológica del sector suroccidental del Mar Caribe, Boletín científico CIOH (Centro de Investigaciones Oceanográficas e Hidrográficas), vol. 17., pp. 3–16, Cartagena de Indias, Colombia

  • Torregroza-Espinosa AC, Restrepo JC, Correa-Metrio A, Hoyos N, Escobar J, Pierini J, Martinez JM (2020) Fluvial and oceanographic influences on suspended sediment dispersal in the Magdalena River estuary. J Mar Syst 204:103282. https://doi.org/10.1016/j.jmarsys.2019.103282

    Article  Google Scholar 

  • Torres RR, Tsimplis MN (2011) Tides and long-term modulations in the Caribbean Sea. J Geophys Res 116:C10022. https://doi.org/10.1029/2011JC006973

    Article  Google Scholar 

  • U.S. Geological Survey USGS (2001) Beyond the Golden Gate - Oceanography, Geology, Biology, and Environmental Issues in the Gulf of the Farallones. Circular 1198. Edited by Herman A. Karl, John L. Chin, Edward Ueber, Peter H. Stauffer, and James W. Hendley II. Downloaded from: https://pubs.usgs.gov/circ/c1198/

  • van Rijn LC (1989) The state of the art in sediment transport modeling, in sediment transport modeling, edited by Sam S.Y. Wang, 1989. American Society of Civil Engineers

  • Van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, The Netherlands, p 790

    Google Scholar 

  • Vargas-Cuervo G (2016) Determination of the relative sediment concentration in water bodies using remote sensing methodology. Cuadernos de Geografía: Revista Colombiana de Geografía 26(1):11–24. https://doi.org/10.15446/rcdg.v26n1.56021

    Article  Google Scholar 

  • Velásquez-Montoya L (2013) Modelación del transporte de sedimentos en el Golfo de Urabá, Colombia. Master Thesis. Universidad de Eafit. Medellín. 132 pp

  • Vernette G, Gayet J, Echeverry CM, Piedrahita I, Correa ID (2002) Introducción a los ambientes deltaicos: morfología y sedimentación. In: Correa ID, Restrepo JD (eds) Geología y Oceanografía del Delta del Río San Juan: Litoral Pacífico Colombiano. Fondo Editorial Universidad EAFIT, Medellín, pp 22–53

    Google Scholar 

  • Visser A (1997) Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar Ecol Prog Ser 158:275–281. https://doi.org/10.3354/meps158275

    Article  Google Scholar 

  • Wolanski E, Nhan NH, Spagnol S (1998) Sediment dynamics during low flow conditions in the Mekong River Estuary, Vietnam. J Coast Res 14(2):472–482 Royal Palm Beach (Florida). ISSN 0749-0208

    Google Scholar 

  • Woods Hole Group (2016) Deployment of RTMM system ECP-Boya-01 in block RC-9 for area nearby Molusco 1 well, Final report. October 2016. WHG File: 2016-0113. Technical Document prepared for Ecopetrol. Project 2016–01113. Bogotá, pp. 9

  • Woods Hole Group (2017) Real Time Metocean Mooring (RTMM) ECOPETROL Costa Afuera Colombia First Quarterly Data Report for 20 September 2016 through 05 January 2017. Technical Document prepared for Ecopetrol. Contract ECA-002-2016, WHG Project 2016–0113. Bogotá. 87 pp

  • Wu J, Liu J, Wang X (2012) Sediment trapping of turbidity maxima in the Changjiang estuary. Marine Geol 303–306:14–25. https://doi.org/10.1016/j.margeo.2012.02.011

    Article  Google Scholar 

  • Wust G (1963) On the stratification and the circulation in the cold-water sphere of the Antillean-Caribbean basin. Deep-Sea Res 10:165–187

    Google Scholar 

Download references

Acknowledgements

This study has been conducted using E.U. Copernicus Marine Service Information, ERA-5 ECMWF re-analysis and GEBCO-2019 datasets. In situ data used in the validation of the re-analyses are property of Ecopetrol S.A.

Funding

This work was financially supported by ECOPETROL (Colombian Petroleum Company) (project SSCPL: 0410010006: Adaptation of methodologies for evaluation of geohazards and sea hazards in the Colombian Caribbean Basin).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Andrea Devis-Morales.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent to participate

All authors agreed to participate in this study.

Consent for publication

The authors hereby consent the publication of this original work in the Ocean Dynamics Journal.

Ethics approval

Not applicable.

Code availability

Authors have used open-access software in the preparation of this work.

Additional information

Responsible Editor: Alejandro Orfila

This article is part of the Topical Collection on the International Conference of Marine Science ICMS2018, the 3rd Latin American Symposium on Water Waves (LatWaves 2018), Medellin, Colombia, 19-23 November 2018 and the XVIII National Seminar on Marine Sciences and Technologies (SENALMAR), Barranquilla, Colombia 22-25 October 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devis-Morales, A., Rodríguez-Rubio, E. & Montoya-Sánchez, R.A. Modelling the transport of sediment discharged by Colombian rivers to the southern Caribbean Sea. Ocean Dynamics 71, 251–277 (2021). https://doi.org/10.1007/s10236-020-01431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01431-y

Keywords

Navigation