Skip to main content

Advertisement

Log in

Hearing loss and dementia: radiologic and biomolecular basis of their shared characteristics. A systematic review.

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Dementia and hearing loss share radiologic and biologic findings that might explain their coexistence, especially in the elderly population. Brain atrophy has been observed in both conditions, as well as the presence of areas of gliosis. The brain atrophy is usually focal; it is located in the temporal lobe in patients with hearing loss, while it involves different part of brain in patients with dementia. Radiological studies have shown white matter hyperintensities (WMHs) in both conditions. WMHs have been correlated with the inability to correctly understand words in elderly persons with normal auditory thresholds and, the identification of these lesion in brain magnetic resonance imaging studies has been linked with an increased risk of developing cognitive loss. In addition to WMHs, some anatomopathological studies identified the presence of brain gliosis in the elderly’s brain. The cause-effect link between hearing loss and dementia is still unknown, despite they might share some common findings. The aim of this systematic review is to analyze radiologic and biomolecular findings that these two conditions might share, identify a common pathological basis, and discuss the effects of hearing aids on prevention and treatment of cognitive decline in elderly patients with hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zheng Y, Fan S, Liao W, Fang W, Xiao S, Liu J (2017) Hearing impairment and risk of Alzheimer's disease: a meta-analysis of prospective cohort studies. Neurol Sci 38(2):233–239. https://doi.org/10.1007/s10072-016-2779-3

    Article  PubMed  Google Scholar 

  2. Lin FR, Yaffe K, Xia J, Xue QL, Harris TB, Purchase-Helzner E, Satterfield S, Ayonayon HN, Ferrucci L, Simonsick EM, Health ABCSG (2013) Hearing loss and cognitive decline in older adults. JAMA Intern Med 173(4):293–299. https://doi.org/10.1001/jamainternmed.2013.1868

    Article  PubMed  Google Scholar 

  3. Golub JS (2017) Brain changes associated with age-related hearing loss. Curr Opin Otolaryngol Head Neck Surg 25(5):347–352. https://doi.org/10.1097/MOO.0000000000000387

    Article  PubMed  Google Scholar 

  4. Lin FR, Ferrucci L, An Y, Goh JO, Doshi J, Metter EJ, Davatzikos C, Kraut MA, Resnick SM (2014) Association of hearing impairment with brain volume changes in older adults. Neuroimage 90:84–92. https://doi.org/10.1016/j.neuroimage.2013.12.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin FR, Albert M (2014) Hearing loss and dementia - who is listening? Aging Ment Health 18(6):671–673. https://doi.org/10.1080/13607863.2014.915924

    Article  PubMed  PubMed Central  Google Scholar 

  6. Uchida Y, Sugiura S, Nishita Y, Saji N, Sone M, Ueda H (2019) Age-related hearing loss and cognitive decline - the potential mechanisms linking the two. Auris Nasus Larynx 46(1):1–9. https://doi.org/10.1016/j.anl.2018.08.010

    Article  PubMed  Google Scholar 

  7. Gouw AA, Seewann A, Vrenken H, van der Flier WM, Rozemuller JM, Barkhof F, Scheltens P, Geurts JJ (2008) Heterogeneity of white matter hyperintensities in Alzheimer's disease: post-mortem quantitative MRI and neuropathology. Brain 131(Pt 12):3286–3298. https://doi.org/10.1093/brain/awn265

    Article  CAS  PubMed  Google Scholar 

  8. Stahl SM (2017) Does treating hearing loss prevent or slow the progress of dementia? Hearing is not all in the ears, but who's listening? CNS Spectr 22(3):247–250. https://doi.org/10.1017/S1092852917000268

    Article  PubMed  Google Scholar 

  9. Wayne RV, Johnsrude IS (2015) A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Ageing res rev 23 (Pt B):154-166. https://doi.org/10.1016/j.arr.2015.06.002

  10. Wolters FJ, Segufa RA, Darweesh SKL, Bos D, Ikram MA, Sabayan B, Hofman A, Sedaghat S (2018) Coronary heart disease, heart failure, and the risk of dementia: a systematic review and meta-analysis. Alzheimers Dement 14(11):1493–1504. https://doi.org/10.1016/j.jalz.2018.01.007

    Article  PubMed  Google Scholar 

  11. Lourenco J, Serrano A, Santos-Silva A, Gomes M, Afonso C, Freitas P, Paul C, Costa E (2018) Cardiovascular Risk Factors Are Correlated with Low Cognitive Function among Older Adults Across Europe Based on The SHARE Database. Aging Dis 9(1):90–101. https://doi.org/10.14336/AD.2017.0128

    Article  PubMed  PubMed Central  Google Scholar 

  12. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J, Cooper C, Fox N, Gitlin LN, Howard R, Kales HC, Larson EB, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbaek G, Teri L, Mukadam N (2017) Dementia prevention, intervention, and care. Lancet 390(10113):2673–2734. https://doi.org/10.1016/S0140-6736(17)31363-6

    Article  Google Scholar 

  13. Chang J, Ryou N, Jun HJ, Hwang SY, Song JJ, Chae SW (2016) Effect of cigarette smoking and passive smoking on hearing impairment: data from a population-based study. PLoS One 11(1):e0146608. https://doi.org/10.1371/journal.pone.0146608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uchida Y, Sugiura S, Ando F, Nakashima T, Shimokata H (2010) Diabetes reduces auditory sensitivity in middle-aged listeners more than in elderly listeners: a population- based study of age-related hearing loss. Med Sci Monit 16(7):PH63–PH68

    PubMed  Google Scholar 

  15. Qian ZJ, Chang PD, Moonis G, Lalwani AK (2017) A novel method of quantifying brain atrophy associated with age-related hearing loss. Neuroimage Clin 16:205–209. https://doi.org/10.1016/j.nicl.2017.07.021

    Article  PubMed  PubMed Central  Google Scholar 

  16. Deters KD, Risacher SL, Kim S, Nho K, West JD, Blennow K, Zetterberg H, Shaw LM, Trojanowski JQ, Weiner MW, Saykin AJ, Alzheimer Disease Neuroimaging I (2017) Plasma tau association with brain atrophy in mild cognitive impairment and Alzheimer's Disease. J Alzheimers Dis 58(4):1245–1254. https://doi.org/10.3233/JAD-161114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harper L, Bouwman F, Burton EJ, Barkhof F, Scheltens P, O'Brien JT, Fox NC, Ridgway GR, Schott JM (2017) Patterns of atrophy in pathologically confirmed dementias: a voxelwise analysis. J Neurol Neurosurg Psychiatry 88(11):908–916. https://doi.org/10.1136/jnnp-2016-314978

    Article  PubMed  PubMed Central  Google Scholar 

  18. Di Stadio A, Messineo D, Ralli M, Roccamatisi D, Musacchio A, Ricci G, Greco A (2020) The impact of white matter hyperintensities on speech perception. Neurol Sci 41:1891–1898. https://doi.org/10.1007/s10072-020-04295-8

    Article  PubMed  Google Scholar 

  19. Armstrong NM, An Y, Doshi J, Erus G, Ferrucci L, Davatzikos C, Deal JA, Lin FR, Resnick SM (2019) Association of Midlife Hearing Impairment with Late-Life Temporal Lobe Volume Loss. JAMA Otolaryngol Head Neck Surg 145:794. https://doi.org/10.1001/jamaoto.2019.1610

    Article  Google Scholar 

  20. Peelle JE, Troiani V, Grossman M, Wingfield A (2011) Hearing loss in older adults affects neural systems supporting speech comprehension. J Neurosci 31(35):12638–12643. https://doi.org/10.1523/JNEUROSCI.2559-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fusconi M, Attanasio G, Capitani F, Di Porto E, Diacinti D, Musy I, Ralli M, Ralli G, Greco A, de Vincentiis M, Colonnese C (2019) Is there a relation between sudden sensorineural hearing loss and white matter lesions? Eur Arch Otorhinolaryngol 276(11):3043–3049. https://doi.org/10.1007/s00405-019-05593-4

    Article  PubMed  Google Scholar 

  22. Garnier-Crussard A, Desestret V, Cotton F, Chetelat G, Krolak-Salmon P (2020) White matter hyperintensities in ageing: pathophysiology, associated cognitive disorders and prevention. Rev Med Interne 41:475–484. https://doi.org/10.1016/j.revmed.2020.02.009

    Article  CAS  PubMed  Google Scholar 

  23. Filley CM, Fields RD (2016) White matter and cognition: making the connection. J Neurophysiol 116(5):2093–2104. https://doi.org/10.1152/jn.00221.2016

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bilello M, Doshi J, Nabavizadeh SA, Toledo JB, Erus G, Xie SX, Trojanowski JQ, Han X, Davatzikos C (2015) Correlating cognitive decline with white matter lesion and brain atrophy magnetic resonance imaging measurements in Alzheimer's Disease. J Alzheimers Dis 48(4):987–994. https://doi.org/10.3233/JAD-150400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW (1988) Brain MR: pathologic correlation with gross and histopathology. 2. Hyperintense white-matter foci in the elderly. AJR Am J Roentgenol 151(3):559–566. https://doi.org/10.2214/ajr.151.3.559

    Article  CAS  PubMed  Google Scholar 

  26. Brun A, Liu X, Erikson C (1995) Synapse loss and gliosis in the molecular layer of the cerebral cortex in Alzheimer's disease and in frontal lobe degeneration. Neurodegeneration 4(2):171–177. https://doi.org/10.1006/neur.1995.0021

    Article  CAS  PubMed  Google Scholar 

  27. Matura S, Prvulovic D, Hartmann D, Scheibe M, Sepanski B, Butz M, Oertel-Knochel V, Knochel C, Karakaya T, Fusser F, Hattingen E, Pantel J (2016) Age-related effects of the Apolipoprotein E gene on brain function. J Alzheimers Dis 52(1):317–331. https://doi.org/10.3233/JAD-150990

    Article  CAS  PubMed  Google Scholar 

  28. Kurniawan C, Westendorp RG, de Craen AJ, Gussekloo J, de Laat J, van Exel E (2012) Gene dose of apolipoprotein E and age-related hearing loss. Neuro biol aging 33(9):2230 e2237–2230 e2212. https://doi.org/10.1016/j.neurobiolaging.2012.04.001

    Article  CAS  Google Scholar 

  29. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261(5123):921–923. https://doi.org/10.1126/science.8346443

    Article  CAS  Google Scholar 

  30. Shen Y, Ye B, Chen P, Wang Q, Fan C, Shu Y, Xiang M (2018) Cognitive decline, dementia, Alzheimer's Disease and Presbycusis: examination of the possible molecular mechanism. Front Neurosci 12:394. https://doi.org/10.3389/fnins.2018.00394

    Article  PubMed  PubMed Central  Google Scholar 

  31. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of a beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15(9):1437–1449. https://doi.org/10.1093/hmg/ddl066

    Article  CAS  PubMed  Google Scholar 

  32. Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K (2013) Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res 303:30–38. https://doi.org/10.1016/j.heares.2013.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di Stadio A, Pegoraro V, Giaretta L, Dipietro L, Marozzo R, Angelini C (2018) Hearing impairment in MELAS: new prospective in clinical use of microRNA, a systematic review. Orphanet J Rare Dis 13(1):35. https://doi.org/10.1186/s13023-018-0770-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Butterfield DA, Mattson MP (2020) Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer's disease. Neurobiol Dis 138:104795. https://doi.org/10.1016/j.nbd.2020.104795

    Article  CAS  PubMed  Google Scholar 

  35. Fuentes-Santamaria V, Alvarado JC, Melgar-Rojas P, Gabaldon-Ull MC, Miller JM, Juiz JM (2017) The role of glia in the peripheral and central auditory system following noise overexposure: contribution of TNF-alpha and IL-1beta to the pathogenesis of hearing loss. Front Neuroanat 11:9. https://doi.org/10.3389/fnana.2017.00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer's disease. J Cell Biol 217(2):459–472. https://doi.org/10.1083/jcb.201709069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Di Stadio A, Angelini C (2019) Microglia polarization by mitochondrial metabolism modulation: a therapeutic opportunity in neurodegenerative diseases. Mitochondrion 46:334–336. https://doi.org/10.1016/j.mito.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  38. Ralli M, Rolesi R, Anzivino R, Turchetta R, Fetoni AR (2017) Acquired sensorineural hearing loss in children: current research and therapeutic perspectives. Acta Otorhinolaryngol Ital 37 (6):500-508. https://doi.org/10.14639/0392-100X-1574

  39. Di Stadio A, Dipietro L, Ralli M, Meneghello F, Minni A, Greco A, Stabile MR, Bernitsas E (2018) Sudden hearing loss as an early detector of multiple sclerosis: a systematic review. Eur rev med Pharmacol Sci 22 (14):4611-4624. https://doi.org/10.26355/eurrev_201807_15520

  40. Di Mauro R, Di Girolamo S, Ralli M, de Vincentiis M, Mercuri N, Albanese M (2019) Subclinical cochlear dysfunction in newly diagnosed relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 33:55–60. https://doi.org/10.1016/j.msard.2019.05.020

    Article  PubMed  Google Scholar 

  41. Di Stadio A, Ralli M (2018) Inner ear involvement in multiple sclerosis: An underestimated condition? Mult Scler 24(9):1264–1265. https://doi.org/10.1177/1352458517750010

    Article  PubMed  Google Scholar 

  42. Tremblay ME, Zettel ML, Ison JR, Allen PD, Majewska AK (2012) Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60(4):541–558. https://doi.org/10.1002/glia.22287

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gefen T, Kim G, Bolbolan K, Geoly A, Ohm D, Oboudiyat C, Shahidehpour R, Rademaker A, Weintraub S, Bigio EH, Mesulam MM, Rogalski E, Geula C (2019) Activated microglia in cortical white matter across cognitive aging trajectories. Front Aging Neurosci 11:94. https://doi.org/10.3389/fnagi.2019.00094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Severini C, Barbato C, Di Certo MG, Gabanella F, Petrella C, Di Stadio A, de Vincentiis M, Polimeni A, Ralli M, Greco A (2020) Alzheimer's disease: new concepts on the role of autoimmunity and of NLRP3 inflammasome in the pathogenesis of the disease. Curr Neuropharmacol 18. https://doi.org/10.2174/1570159X18666200621204546

  45. Fuger P, Hefendehl JK, Veeraraghavalu K, Wendeln AC, Schlosser C, Obermuller U, Wegenast-Braun BM, Neher JJ, Martus P, Kohsaka S, Thunemann M, Feil R, Sisodia SS, Skodras A, Jucker M (2017) Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging. Nat Neurosci 20(10):1371–1376. https://doi.org/10.1038/nn.4631

    Article  CAS  PubMed  Google Scholar 

  46. Shi X, Qiu S, Zhuang W, Yuan N, Wang C, Zhang S, Sun T, Guo W, Gao F, Yang S, Qiao Y (2017) NLRP3-inflammasomes are triggered by age-related hearing loss in the inner ear of mice. Am J Transl Res 9(12):5611–5618

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nakanishi H, Kawashima Y, Kurima K, Muskett JA, Kim HJ, Brewer CC, Griffith AJ (2018) Gradual symmetric progression of DFNA34 hearing loss caused by an NLRP3 mutation and Cochlear autoinflammation. Otol Neurotol 39(3):e181–e185. https://doi.org/10.1097/MAO.0000000000001715

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P, Yao WF, Gao H, Wei MJ (2019) Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-kappaB signaling pathway. CNS Neurosci Ther 25(5):575–590. https://doi.org/10.1111/cns.13086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang S, Chen B, Yu Y, Yang H, Cui W, Li J, Fan GG (2019) Alterations of structural and functional connectivity in profound sensorineural hearing loss infants within an early sensitive period: a combined DTI and fMRI study. Dev Cogn Neurosci 38:100654. https://doi.org/10.1016/j.dcn.2019.100654

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wolak T, Ciesla K, Pluta A, Wlodarczyk E, Biswal B, Skarzynski H (2019) Altered functional connectivity in patients with sloping Sensorineural hearing loss. Front Hum Neurosci 13:284. https://doi.org/10.3389/fnhum.2019.00284

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ghiselli S, Gheller F, Trevisi P, Favaro E, Martini A, Ermani M (2020) Restoration of auditory network after cochlear implant in prelingual deafness: a P300 study using LORETA. Acta Otorhinolaryngol Ital 40 (1):64-71. https://doi.org/10.14639/0392-100X-2316

  52. Patel AM, Cahill LD, Ret J, Schmithorst V, Choo D, Holland S (2007) Functional magnetic resonance imaging of hearing-impaired children under sedation before cochlear implantation. Arch Otolaryngol Head Neck Surg 133(7):677–683. https://doi.org/10.1001/archotol.133.7.677

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pereira-Jorge MR, Andrade KC, Palhano-Fontes FX, Diniz PRB, Sturzbecher M, Santos AC, Araujo DB (2018) Anatomical and functional MRI changes after one year of auditory rehabilitation with hearing aids. Neural Plast 2018:9303674–9303613. https://doi.org/10.1155/2018/9303674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Di Stadio A, Dipietro L, De Lucia A, Ippolito V, Ishai R, Garofalo S, Pastore V, Ricci G, Della Volpe A (2020) A novel bone conduction hearing system may improve memory function in children with single side hearing loss: a case-control study. J Int Adv Otol 16(2):158–164. https://doi.org/10.5152/iao.2020.7941

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jongsiriyanyong S, Limpawattana P (2018) Mild cognitive impairment in clinical practice: a review article. Am J Alzheimers Dis Other Dement 33(8):500–507. https://doi.org/10.1177/1533317518791401

    Article  Google Scholar 

  56. Assed MM, Rocca CCA, Garcia YM, Khafif TC, Belizario GO, Toschi-Dias E, Serafim AP (2020) Memory training combined with 3D visuospatial stimulus improves cognitive performance in the elderly: pilot study. Dement Neuropsychol 14(3):290–299. https://doi.org/10.1590/1980-57642020dn14-030010

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rosskothen-Kuhl N, Hildebrandt H, Birkenhager R, Illing RB (2018) Astrocyte hypertrophy and microglia activation in the rat auditory midbrain is induced by electrical Intracochlear stimulation. Front Cell Neurosci 12:43. https://doi.org/10.3389/fncel.2018.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fuentes-Santamaria V, Alvarado JC, Juiz JM (2012) Long-term interaction between microglial cells and cochlear nucleus neurons after bilateral cochlear ablation. J Comp Neurol 520(13):2974–2990. https://doi.org/10.1002/cne.23088

    Article  PubMed  Google Scholar 

  59. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194. https://doi.org/10.1007/s12035-014-9070-5

    Article  CAS  PubMed  Google Scholar 

  60. Fortunato S, Forli F, Guglielmi V, De Corso E, Paludetti G, Berrettini S, Fetoni AR (2016) A review of new insights on the association between hearing loss and cognitive decline in ageing. Acta Otorhinolaryngol Ital 36 (3):155-166. https://doi.org/10.14639/0392-100X-993

  61. Pickles JO (2015) Auditory pathways: anatomy and physiology. Handb Clin Neurol 129:3–25. https://doi.org/10.1016/B978-0-444-62630-1.00001-9

    Article  PubMed  Google Scholar 

  62. Di Stadio A, Dipietro L, Toffano R, Burgio F, De Lucia A, Ippolito V, Garofalo S, Ricci G, Martines F, Trabalzini F, Della Volpe A (2018) Working memory function in children with single side deafness using a bone-anchored hearing implant: a case-control study. Audiol Neurootol 23(4):238–244. https://doi.org/10.1159/000493722

    Article  PubMed  Google Scholar 

  63. McKay CM (2018) Brain plasticity and rehabilitation with a Cochlear implant. Adv Otorhinolaryngol 81:57–65. https://doi.org/10.1159/000485586

    Article  PubMed  Google Scholar 

  64. Karawani H, Jenkins K, Anderson S (2018) Restoration of sensory input may improve cognitive and neural function. Neuropsychologia 114:203–213. https://doi.org/10.1016/j.neuropsychologia.2018.04.041

    Article  PubMed  PubMed Central  Google Scholar 

  65. Velayudhan L, Ryu SH, Raczek M, Philpot M, Lindesay J, Critchfield M, Livingston G (2014) Review of brief cognitive tests for patients with suspected dementia. Int Psychogeriatr 26(8):1247–1262. https://doi.org/10.1017/S1041610214000416

    Article  PubMed  PubMed Central  Google Scholar 

  66. Khan AM, Handzel O, Burgess BJ, Damian D, Eddington DK, Nadol JB Jr (2005) Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants? Laryngoscope 115(4):672–677. https://doi.org/10.1097/01.mlg.0000161335.62139.80

    Article  PubMed  Google Scholar 

  67. Liberman MC, Kujawa SG (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms. Hear Res 349:138–147. https://doi.org/10.1016/j.heares.2017.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  68. Disorders NIoDaoC (2016) Hearing Loss and Older Adults. https://wwwnidcdnihgov/health/hearing-loss-older-adults

  69. Ray M, Dening T, Crosbie B (2019) Dementia and hearing loss: a narrative review. Maturitas 128:64–69. https://doi.org/10.1016/j.maturitas.2019.08.001

    Article  PubMed  Google Scholar 

  70. Cardin V (2016) Effects of aging and adult-onset hearing loss on cortical auditory regions. Front Neurosci 10:199. https://doi.org/10.3389/fnins.2016.00199

    Article  PubMed  PubMed Central  Google Scholar 

  71. NICE (2018) Hearing Loss in Adults: Assessment and Management https://wwwniceorguk/guidance/ng98

  72. Swords GM, Nguyen LT, Mudar RA, Llano DA (2018) Auditory system dysfunction in Alzheimer disease and its prodromal states: a review. Ageing Res Rev 44:49–59. https://doi.org/10.1016/j.arr.2018.04.001

    Article  PubMed  Google Scholar 

  73. Davis A, McMahon CM, Pichora-Fuller KM, Russ S, Lin F, Olusanya BO, Chadha S, Tremblay KL (2016) Aging and hearing Health: the life-course approach. Gerontologist 56(Suppl 2):S256–S267. https://doi.org/10.1093/geront/gnw033

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ralli M, Gilardi A, Stadio AD, Severini C, Salzano FA, Greco A, Vincentiis M (2019) Hearing loss and Alzheimer's disease: A Review. Int Tinnitus J 23(2):79–85. https://doi.org/10.5935/0946-5448.20190014

    Article  PubMed  Google Scholar 

  75. Evenhuis HM (1995) Medical aspects of ageing in a population with intellectual disability: II. Hearing impairment. J Intellect Disabil Res 39(Pt 1):27–33. https://doi.org/10.1111/j.1365-2788.1995.tb00910.x

    Article  PubMed  Google Scholar 

  76. Carrasco-Alarcon P, Morales C, Bahamondez MC, Carcamo DA, Schacht AC (2018) Elderly who refuse to use hearing aids: an analysis of the causes. Codas 30(5):e20170198. https://doi.org/10.1590/2317-1782/20182017198

    Article  PubMed  Google Scholar 

  77. Wolak T, Ciesla K, Rusiniak M, Pilka A, Lewandowska M, Pluta A, Skarzynski H, Skarzynski PH (2016) Influence of acoustic overstimulation on the central auditory system: An functional magnetic resonance imaging (fMRI) study. Med Sci Monit 22:4623–4635. https://doi.org/10.12659/msm.897929

    Article  PubMed  PubMed Central  Google Scholar 

  78. Eeg-Olofsson M, Stenfelt S, Taghavi H, Reinfeldt S, Hakansson B, Tengstrand T, Finizia C (2013) Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration. Hear Res 306:11–20. https://doi.org/10.1016/j.heares.2013.08.015

    Article  PubMed  Google Scholar 

  79. Stenfelt S (2015) Inner ear contribution to bone conduction hearing in the human. Hear Res 329:41–51. https://doi.org/10.1016/j.heares.2014.12.003

    Article  PubMed  Google Scholar 

  80. Sohmer H, Freeman S, Geal-Dor M, Adelman C, Savion I (2000) Bone conduction experiments in humans - a fluid pathway from bone to ear. Hear Res 146(1–2):81–88. https://doi.org/10.1016/s0378-5955(00)00099-x

    Article  CAS  PubMed  Google Scholar 

  81. Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10. https://doi.org/10.1186/2045-8118-11-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Krempaska S, Koval J, Schmid C, Pfiffner F, Kurz A, Kompis M (2014) Influence of directionality and maximal power output on speech understanding with bone anchored hearing implants in single sided deafness. Eur Arch Otorhinolaryngol 271(6):1395–1400. https://doi.org/10.1007/s00405-013-2565-2

    Article  PubMed  Google Scholar 

  83. Torres-Berrio A, Nava-Mesa MO (2019) The opioid system in stress-induced memory disorders: from basic mechanisms to clinical implications in post-traumatic stress disorder and Alzheimer's disease. Prog Neuro-Psychopharmacol Biol Psychiatry 88:327–338. https://doi.org/10.1016/j.pnpbp.2018.08.011

    Article  CAS  Google Scholar 

  84. Okayasu T, Quesnel AM, O'Malley JT, Kamakura T, Nadol JB Jr (2020) The distribution and prevalence of macrophages in the cochlea following Cochlear implantation in the human: An Immunohistochemical study using anti-Iba1 antibody. Otol Neurotol 41(3):e304–e316. https://doi.org/10.1097/MAO.0000000000002495

    Article  PubMed  Google Scholar 

  85. Fitzgerald MB, Sagi E, Jackson M, Shapiro WH, Roland JT Jr, Waltzman SB, Svirsky MA (2008) Reimplantation of hybrid cochlear implant users with a full-length electrode after loss of residual hearing. Otol Neurotol 29(2):168–173. https://doi.org/10.1097/mao.0b013e31815c4875

    Article  PubMed  Google Scholar 

  86. Mosnier I, Bebear JP, Marx M, Fraysse B, Truy E, Lina-Granade G, Mondain M, Sterkers-Artieres F, Bordure P, Robier A, Godey B, Meyer B, Frachet B, Poncet-Wallet C, Bouccara D, Sterkers O (2015) Improvement of cognitive function after cochlear implantation in elderly patients. JAMA Otolaryngol Head Neck Surg 141(5):442–450. https://doi.org/10.1001/jamaoto.2015.129

    Article  PubMed  Google Scholar 

  87. Mosnier I, Vanier A, Bonnard D, Lina-Granade G, Truy E, Bordure P, Godey B, Marx M, Lescanne E, Venail F, Poncet C, Sterkers O, Belmin J (2018) Long-term cognitive prognosis of profoundly deaf older adults after hearing rehabilitation using Cochlear implants. J Am Geriatr Soc 66(8):1553–1561. https://doi.org/10.1111/jgs.15445

    Article  PubMed  Google Scholar 

  88. Castiglione A, Benatti A, Velardita C, Favaro D, Padoan E, Severi D, Pagliaro M, Bovo R, Vallesi A, Gabelli C, Martini A (2016) Aging, cognitive decline and hearing loss: effects of auditory rehabilitation and training with hearing aids and Cochlear implants on cognitive function and depression among older adults. Audiol Neurootol 21(Suppl 1):21–28. https://doi.org/10.1159/000448350

    Article  PubMed  Google Scholar 

  89. Glick HA, Sharma A (2020) Cortical neuroplasticity and cognitive function in early-stage, mild-moderate hearing loss: evidence of neurocognitive benefit from hearing aid use. Front Neurosci 14:93. https://doi.org/10.3389/fnins.2020.00093

    Article  PubMed  PubMed Central  Google Scholar 

  90. Moberly AC, Doerfer K, Harris MS (2019) Does Cochlear implantation improve cognitive function? Laryngoscope 129(10):2208–2209. https://doi.org/10.1002/lary.28140

    Article  PubMed  Google Scholar 

  91. Dawes P, Cruickshanks KJ, Fischer ME, Klein BE, Klein R, Nondahl DM (2015) Hearing-aid use and long-term health outcomes: hearing handicap, mental health, social engagement, cognitive function, physical health, and mortality. Int J Audiol 54(11):838–844. https://doi.org/10.3109/14992027.2015.1059503

    Article  PubMed  PubMed Central  Google Scholar 

  92. Briggs SE (2019) Special populations in implantable auditory devices: geriatric. Otolaryngol Clin N Am 52(2):331–339. https://doi.org/10.1016/j.otc.2018.11.009

    Article  Google Scholar 

  93. Dawes P, Emsley R, Cruickshanks KJ, Moore DR, Fortnum H, Edmondson-Jones M, McCormack A, Munro KJ (2015) Hearing loss and cognition: the role of hearing AIDS, social isolation and depression. PLoS One 10(3):e0119616. https://doi.org/10.1371/journal.pone.0119616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Di Stadio.

Ethics declarations

Potential conflicts of interest

None of the authors reports conflict of interest.

Informed consent

Not applicable for this type of study.

Research involving human participants and/or animals

Not applicable, this is a review.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Stadio, A., Ralli, M., Roccamatisi, D. et al. Hearing loss and dementia: radiologic and biomolecular basis of their shared characteristics. A systematic review.. Neurol Sci 42, 579–588 (2021). https://doi.org/10.1007/s10072-020-04948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04948-8

Keywords

Navigation