Skip to main content
Log in

First Genome of Labyrinthula sp., an Opportunistic Seagrass Pathogen, Reveals Novel Insight into Marine Protist Phylogeny, Ecology and CAZyme Cell-Wall Degradation

  • Genes and Genomes
  • Published:
Microbial Ecology Aims and scope Submit manuscript

A Correction to this article was published on 06 July 2021

This article has been updated

Abstract

Labyrinthula spp. are saprobic, marine protists that also act as opportunistic pathogens and are the causative agents of seagrass wasting disease (SWD). Despite the threat of local- and large-scale SWD outbreaks, there are currently gaps in our understanding of the drivers of SWD, particularly surrounding Labyrinthula spp. virulence and ecology. Given these uncertainties, we investigated the Labyrinthula genus from a novel genomic perspective by presenting the first draft genome and predicted proteome of a pathogenic isolate Labyrinthula SR_Ha_C, generated from a hybrid assembly of Nanopore and Illumina sequences. Phylogenetic and cross-phyla comparisons revealed insights into the evolutionary history of Stramenopiles. Genome annotation showed evidence of glideosome-type machinery and an apicoplast protein typically found in protist pathogens and parasites. Proteins involved in Labyrinthula SR_Ha_C’s actin-myosin mode of transport, as well as carbohydrate degradation were also prevalent. Further, CAZyme functional predictions revealed a repertoire of enzymes involved in breakdown of cell-wall and carbohydrate storage compounds common to seagrasses. The relatively low number of CAZymes annotated from the genome of Labyrinthula SR_Ha_C compared to other Labyrinthulea species may reflect the conservative annotation parameters, a specialized substrate affinity and the scarcity of characterized protist enzymes. Inherently, there is high probability for finding both unique and novel enzymes from Labyrinthula spp. This study provides resources for further exploration of Labyrinthula spp. ecology and evolution, and will hopefully be the catalyst for new hypothesis-driven SWD research revealing more details of molecular interactions between the Labyrinthula genus and its host substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The whole genome assembly was deposited into the NCBI/GenBank Whole Genome Sequence (WGS) database with the accession number JAALGZ000000000 and raw genomic reads into NCBI/Short Read Archive (SRA) with accession numbers SRR12496087 and SRR12496088, all of which are under the BioProject PRJNA607370. The mitochondrial genome was deposited into the NCBI/GenBank database with the accession number MT267870. Data S1 and S2 are available via Mendeley Data at DOI: https://doi.org/10.17632/cg2ys63ps2.1.

Change history

References

  1. Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J, Crandall KA, Durbin R, Edwards SV, Forest F, Gilbert MTP (2018) Earth BioGenome Project: sequencing life for the future of life. Proc Natl Acad Sci 115(17):4325–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sibbald SJ, Archibald JM (2017) More protist genomes needed. Nat Ecol Evol 1(5):1–3

    Article  Google Scholar 

  3. Lange L, Barrett K, Pilgaard B, Gleason F, Tsang A (2019) Enzymes of early-diverging, zoosporic fungi. Appl Microbiol Biotechnol 103(17):6885–6902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Göker M, Parker CT, Amann R, Beck BJ, Chain PS, Chun J (2014) Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol 12(8):e1001920

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fernandes N, Case RJ, Longford SR, Seyedsayamdost MR, Steinberg PD, Kjelleberg S, Thomas T (2011) Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. PLoS One 6(12):e27387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harvell C, Kim K, Burkholder J, Colwell R, Epstein PR, Grimes D, Hofmann E, Lipp E, Osterhaus A, Overstreet RM (1999) Emerging marine diseases--climate links and anthropogenic factors. Science 285(5433):1505–1510

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan BK, Trevathan-Tackett SM, Neuhauser S, Govers LL (2018) Host-pathogen dynamics of seagrass diseases under future global change. Mar Pollut Bull 134:75–88

    Article  CAS  PubMed  Google Scholar 

  8. Brakel J, Reusch TB, Bockelmann A-C (2017) Moderate virulence caused by the protist Labyrinthula zosterae in ecosystem foundation species Zostera marina under nutrient limitation. Mar Ecol Prog Ser 571:97–108

    Article  CAS  Google Scholar 

  9. Martin DL, Chiari Y, Boone E, Sherman TD, Ross C, Wyllie-Echeverria S, Gaydos JK, Boettcher AA (2016) Functional, phylogenetic and host-geographic signatures of Labyrinthula spp. provide for putative species delimitation and a global-scale view of seagrass wasting disease. Estuar Coasts 39(5):1403–1421

    Article  CAS  Google Scholar 

  10. Leander CA, Porter D (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93(3):459–464

    Article  Google Scholar 

  11. Duffin P, Martin DL, Pagenkopp Lohan KM, Ross C (2020) Integrating host immune status, Labyrinthula spp. load and environmental stress in a seagrass pathosystem: assessing immune markers and scope of a new qPCR primer set. PLoS One 15(3):e0230108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lohan KMP, DiMaria R, Martin DL, Ross C, Ruiz GM (2020) Diversity and microhabitat associations of Labyrinthula spp. in the Indian River lagoon system. Dis Aquat Org 137(2):145–157

    Article  Google Scholar 

  13. Brakel J, Werner FJ, Tams V, Reusch TB, Bockelmann A-C (2014) Current European Labyrinthula zosterae are not virulent and modulate seagrass (Zostera marina) defense gene expression. PLoS One 9(4):e92448

    Article  PubMed  PubMed Central  Google Scholar 

  14. Collier JL, Rest JS (2019) Swimming, gliding, and rolling toward the mainstream: cell biology of marine protists. Mol Biol Cell 30(11):1245–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song Z, Stajich JE, Xie Y, Liu X, He Y, Chen J, Hicks GR, Wang G (2018) Comparative analysis reveals unexpected genome features of newly isolated Thraustochytrids strains: on ecological function and PUFAs biosynthesis. BMC Genomics 19(1):541

    Article  PubMed  PubMed Central  Google Scholar 

  16. Trevathan-Tackett SM, Sullivan BK, Robinson K, Lilje O, Macreadie PI, Gleason FH (2018) Pathogenic Labyrinthula associated with Australian seagrasses: considerations for seagrass wasting disease in the southern hemisphere. Microbiol Res 206:74–81

    Article  PubMed  Google Scholar 

  17. Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC (2017) GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33(14):2202–2204. https://doi.org/10.1093/bioinformatics/btx153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zimin AV, Puiu D, Luo M-C, Zhu T, Koren S, Marçais G, Yorke JA, Dvořák J, Salzberg SL (2017) Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res 27(5):787–792. https://doi.org/10.1101/gr.213405.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roach MJ, Schmidt SA, Borneman AR (2018) Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics 19(1):460. https://doi.org/10.1186/s12859-018-2485-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A (2018) Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34(13):i142–i150. https://doi.org/10.1093/bioinformatics/bty266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seppey M, Manni M, Zdobnov EM (2019) BUSCO: assessing genome assembly and annotation completeness. In: Kollmar M (ed) Gene prediction: methods and protocols. Springer, New York, pp 227–245. https://doi.org/10.1007/978-1-4939-9173-0_14

    Chapter  Google Scholar 

  22. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27(8):1767–1780. https://doi.org/10.1093/nar/27.8.1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lang BF, Burger G, O'Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387(6632):493–497. https://doi.org/10.1038/387493a0

    Article  CAS  PubMed  Google Scholar 

  24. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512. https://doi.org/10.1038/nprot.2013.084

    Article  CAS  PubMed  Google Scholar 

  25. Howe KL, Contreras-Moreira B, De Silva N, Maslen G, Akanni W, Allen J, Alvarez-Jarreta J, Barba M, Bolser DM, Cambell L, Carbajo M, Chakiachvili M, Christensen M, Cummins C, Cuzick A, Davis P, Fexova S, Gall A, George N, Gil L, Gupta P, Hammond-Kosack KE, Haskell E, Hunt SE, Jaiswal P, Janacek SH, Kersey PJ, Langridge N, Maheswari U, Maurel T, McDowall MD, Moore B, Muffato M, Naamati G, Naithani S, Olson A, Papatheodorou I, Patricio M, Paulini M, Pedro H, Perry E, Preece J, Rosello M, Russell M, Sitnik V, Staines DM, Stein J, Tello-Ruiz MK, Trevanion SJ, Urban M, Wei S, Ware D, Williams G, Yates AD, Flicek P (2019) Ensembl genomes 2020—enabling non-vertebrate genomic research. Nucleic Acids Res 48(D1):D689–D695. https://doi.org/10.1093/nar/gkz890

    Article  CAS  PubMed Central  Google Scholar 

  26. Consortium TU (2018) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  27. Holt C, Yandell M (2011) MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12(1):491. https://doi.org/10.1186/1471-2105-12-491

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59–60. https://doi.org/10.1038/nmeth.3176

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46(W1):W95–W101. https://doi.org/10.1093/nar/gky418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2008) The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37(suppl_1):D233–D238. https://doi.org/10.1093/nar/gkn663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barrett K, Lange L (2019) Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP). Biotechnol Biofuels 12(102):1–21

    Google Scholar 

  32. Exposito-Alonso M, Drost HG, Burbano HA, Weigel D (2020) The Earth BioGenome project: opportunities and challenges for plant genomics and conservation. Plant J 102(2):222–229

    Article  CAS  PubMed  Google Scholar 

  33. Cipollone R, Ascenzi P, Visca P (2007) Common themes and variations in the rhodanese superfamily. IUBMB Life 59(2):51–59

    Article  CAS  PubMed  Google Scholar 

  34. Tian Y, Gao S, Yang S, Nagel G (2018) A novel rhodopsin phosphodiesterase from Salpingoeca rosetta shows light-enhanced substrate affinity. Biochem J 475(6):1121–1128

    Article  CAS  PubMed  Google Scholar 

  35. Kazama F (1972) Ultrastructure and phototaxis of the zoospores of Phlyctochytrium sp., an estuarine chytrid. Microbiology 71(3):555–566

    Google Scholar 

  36. Harding T, Roger AJ, Simpson AG (2017) Adaptations to high salt in a halophilic protist: differential expression and gene acquisitions through duplications and gene transfers. Front Microbiol 8:944. https://doi.org/10.3389/fmicb.2017.00944

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oborník M, Janouškovec J, Chrudimský T, Lukeš J (2009) Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol 39(1):1–12

    Article  PubMed  Google Scholar 

  38. Keeley A, Soldati D (2004) The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends Cell Biol 14(10):528–532

    Article  CAS  PubMed  Google Scholar 

  39. Warnecke D, Heinz E (2003) Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci 60(5):919–941

    Article  CAS  PubMed  Google Scholar 

  40. Davies P, Morvan C, Sire O, Baley C (2007) Structure and properties of fibres from sea-grass (Zostera marina). J Mater Sci 42(13):4850–4857

    Article  CAS  Google Scholar 

  41. Bongiorni L, Pusceddu A, Danovaro R (2005) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41(3):299–305

    Article  Google Scholar 

  42. Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2009) Extracellular enzymes produced by marine eukaryotes, thraustochytrids. Biosci Biotechnol Biochem 73(1):180–182

    Article  CAS  PubMed  Google Scholar 

  43. Iwata I, Honda D (2018) Nutritional intake by ectoplasmic nets of Schizochytrium aggregatum (Labyrinthulomycetes, Stramenopiles). Protist 169(5):727–743

    Article  PubMed  Google Scholar 

  44. Rubin E, Tanguy A, Perrigault M, Espinosa EP, Allam B (2014) Characterization of the transcriptome and temperature-induced differential gene expression in QPX, the thraustochytrid parasite of hard clams. BMC Genomics 15(1):245

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wideman JG, Monier A, Rodríguez-Martínez R, Leonard G, Cook E, Poirier C, Maguire F, Milner DS, Irwin NA, Moore K (2020) Unexpected mitochondrial genome diversity revealed by targeted single-cell genomics of heterotrophic flagellated protists. Nat Microbiol 5(1):154–165

    Article  CAS  PubMed  Google Scholar 

  46. Žihala D, Salamonová J, Eliáš M (2020) Evolution of the genetic code in the mitochondria of Labyrinthulea (Stramenopiles). Mol Phylogenet Evol 152:106908

    Article  PubMed  Google Scholar 

  47. Falabella M, Fernandez RJ, Johnson FB, Kaufman BA (2019) Potential roles for G-quadruplexes in mitochondria. Curr Med Chem 26(16):2918–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brázda V, Kolomazník J, Lýsek J, Bartas M, Fojta M, Šťastný J, Mergny J-L (2019) G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 35(18):3493–3495

    Article  PubMed  PubMed Central  Google Scholar 

  49. Harris LM, Merrick CJ (2015) G-quadruplexes in pathogens: a common route to virulence control? PLoS Pathog 11(2):e1004562

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tsui CK, Marshall W, Yokoyama R, Honda D, Lippmeier JC, Craven KD, Peterson PD, Berbee ML (2009) Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Mol Phylogenet Evol 50(1):129–140

    Article  CAS  PubMed  Google Scholar 

  51. Raghukumar S, Damare VS (2011) Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Bot Mar 54(1):3–11

    Article  Google Scholar 

  52. Gibson DM, King BC, Hayes ML, Bergstrom GC (2011) Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Curr Opin Microbiol 14(3):264–270

    Article  CAS  PubMed  Google Scholar 

  53. Lange L, Pilgaard B, Herbst F-A, Busk PK, Gleason F, Pedersen AG (2019) Origin of fungal biomass degrading enzymes: evolution, diversity and function of enzymes of early lineage fungi. Fungal Biol Rev 33(1):82–97

    Article  Google Scholar 

  54. Marchan LF, Chang KJL, Nichols PD, Mitchell WJ, Polglase JL, Gutierrez T (2018) Taxonomy, ecology and biotechnological applications of thraustochytrids: a review. Biotechnol Adv 36(1):26–46

    Article  Google Scholar 

Download references

Acknowledgments

This research utilized computational resources and services provided by the National Computational Infrastructure (NCI), which is supported by the Australian Government. We thank Samuel Lysy for his assistance in the lab. We would also like to thank Robert Ruge of Deakin University for assistance and use of the SIT HPC Cluster.

Funding

Funding for this study was provided by the Mary Collins Trust and the Deakin Genomics Centre, Deakin University (Australia).

Author information

Authors and Affiliations

Authors

Contributions

STT, SL, MT, LC, LL, and FHG designed the research and direction of analyses. STT collected and isolated the sample. SL performed whole genome and transcriptome sequencing. MT assembled and annotated the genome and transcriptome, and carried out phylogenetic analysis. LC and MT performed comparative analyses of assemblies and proteomes of other protist genomes. LL, BP, and MT analyzed the peptide-based functional annotation of CAZymes. MT and STT led the writing of the manuscript. All authors edited and developed the manuscript.

Corresponding author

Correspondence to Stacey M. Trevathan-Tackett.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

Not applicable.

Consent to Participate and for Publication

All authors approved the final version of the manuscript.

Additional information

The original online version of this article was revised: The supplementary materials contained errors.

Supplementary Information

ESM 1

(DOCX 48.6 kb)

ESM 2

(PDF 549 kb)

ESM 3

(PDF 16.5 kb)

ESM 4

(PDF 357 kb)

ESM 5

(XLSX 32.5 kb)

ESM 6

(XLSX 33.6 kb)

ESM 7

(XLSX 19.9 kb)

ESM 8

(XLSX 29.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M.H., Loke, S., Croft, L.J. et al. First Genome of Labyrinthula sp., an Opportunistic Seagrass Pathogen, Reveals Novel Insight into Marine Protist Phylogeny, Ecology and CAZyme Cell-Wall Degradation. Microb Ecol 82, 498–511 (2021). https://doi.org/10.1007/s00248-020-01647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01647-x

Keywords

Navigation