Skip to main content

Advertisement

Log in

Spatial distribution of the pine marten (Martes martes) and stone marten (Martes foina) in the Italian Alps

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

The pine marten (Martes martes) and stone marten (Martes foina) are considered similar carnivores in terms of morphology, habitat requirements, diet and distribution. Despite their range overlap widely throughout Europe, few studies have analysed their spatial distribution in sympatry. With the aim of investigating the environmental factors which may enhance their coexistence, we focused on the Italian sector of the Alpine biogeographical region, an area offering homogeneous environmental conditions and resources. Recent, presence-only data were collected through a collaboration network and ad hoc surveys for faecal DNA, yielding a total of 1658 and 329 records for stone marten and pine marten, respectively. Species distribution models (SDM) were run using MaxEnt with sampling bias correction. Three detailed models were fitted, each considering different landscape descriptors (land use, topography and climate) and, finally, an overall model was developed for each species. The pine marten selected forested areas, particularly coniferous forests, at intermediate altitude, while lower-altitude belts, partially including cultivated and urban areas, were more suitable for the stone marten. Both martens avoided open areas. Moreover, the thermophilic stone marten preferred warmer and drier areas than the pine marten. About 50% of the Alpine area was filed as suitable for each species, with 34.6% of cells resulting suitable for both martens. Differential use of space, probably associated with segregation along with other dimensions of their niches (e.g. the temporal niche), lowers resource competition and enhances the coexistence of these strictly-related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramov AV, Kranz A, Herrero J, Choudhury A, Maran T (2016) Martes foina. IUCN Red List Threat. Species 2016 E T29672A45202514

  • Akaike H (1973) Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60:255–265

    Article  Google Scholar 

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Spatial coexistence mechanisms. Ecol Lett 6:1109–1122. https://doi.org/10.1046/j.1461-0248.2003.00530.x

    Article  Google Scholar 

  • Anderson E (1994) Evolution, prehistoric distribution, and systematics of Martes. In: Buskirk S, Harestad AS, Raphael MG, Powell RA (eds) Martens, sables, and fishers: biology and conservation. Cornell University Press, Ithaca, New York, pp 13–25

    Google Scholar 

  • Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manag 66:912–918

    Article  Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x

    Article  Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492. https://doi.org/10.1111/j.1461-0248.2011.01610.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Baghli A, Engel E, Verhagen R (2002) Feeding habits and trophic niche overlap of two sympatric mustelidae, the polecat Mustela putorius and the beech marten Martes foina. Z Für Jagdwiss 48:217–225

    Google Scholar 

  • Balestrieri A (2016) Distribution and ecology of lowland pine marten (Martes martes L. 1758) (PhD Thesis). Università di Milano

  • Balestrieri A, Remonti L, Ruiz-González A, Gómez-Moliner BJ, Vergara M, Prigioni C (2010) Range expansion of the pine marten (Martes martes) in an agricultural landscape matrix (NW Italy). Mamm Biol Z Für Säugetierkd 75:412–419

    Article  Google Scholar 

  • Balestrieri A, Remonti L, Ruiz-González A, Vergara M, Capelli E, Gómez-Moliner BJ, Prigioni C (2011) Food habits of genetically identified pine marten (Martes martes) expanding in agricultural lowlands (NW Italy). Acta Theriol 56:199–207

    Article  Google Scholar 

  • Balestrieri A, Bogliani G, Boano G, Ruiz-González A, Saino N, Costa S, Milanesi P (2016a) Modelling the distribution of forest-dependent species in human-dominated landscapes: patterns for the pine marten in intensively cultivated lowlands. PLoS ONE 11:e0158203. https://doi.org/10.1371/journal.pone.0158203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balestrieri A, Ruiz-González A, Capelli E, Vergara M, Prigioni C, Saino N (2016b) Pine marten vs. stone marten in agricultural lowlands: a landscape-scale, genetic survey. Mammal Res 61:327–335

    Article  Google Scholar 

  • Balestrieri A, Mori E, Menchetti M, Ruiz-González A, Milanesi P (2019) Far from the madding crowd: tolerance toward human disturbance shapes distribution and connectivity patterns of closely related Martes spp. Popul Ecol 61:289–299. https://doi.org/10.1002/1438-390X.12001

    Article  Google Scholar 

  • Bateman BL, VanDerWal J, Williams SE, Johnson CN (2012) Biotic interactions influence the projected distribution of a specialist mammal under climate change. Divers Distrib 18:861–872. https://doi.org/10.1111/j.1472-4642.2012.00922.x

    Article  Google Scholar 

  • Bateman BL, Pidgeon AM, Radeloff VC, Flather CH, VanDerWal J, Akçakaya HR, Thogmartin WE, Albright TP, Vavrus SJ, Heglund PJ (2016) Potential breeding distributions of U.S. birds predicted with both short-term variability and long-term average climate data. Ecol Appl 26:2720–2731. https://doi.org/10.1002/eap.1416

    Article  Google Scholar 

  • Birks JD, Messenger JE, Halliwell EC (2005) Diversity of den sites used by pine martens Martes martes: a response to the scarcity of arboreal cavities? Mammal Rev 35:313–320

    Article  Google Scholar 

  • Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FK (2002) Evaluating resource selection functions. Ecol Model 157:281–300

    Article  Google Scholar 

  • Brangi A (1995) Seasonal changes of trophic niche overlap in the stone marten (Martes foina) and the red fox (Vulpes vulpes) in a mountainous area of the Northern Apennines (N-Italy). Hystrix Ital J Mammal 7:113–118

    Google Scholar 

  • Brotons L, Thuiller W, Araújo MB, Hirzel AH (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437–448

    Article  Google Scholar 

  • Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol J R Meteorol Soc 25:1855–1880

    Article  Google Scholar 

  • Clements GR, Rayan DM, Aziz SA, Kawanishi K, Traeholt C, Magintan D, Yazi MFA, Tingley R (2012) Predicting the distribution of the Asian tapir in Peninsular Malaysia using maximum entropy modeling. Integr Zool 7:400–406

    Article  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London, UK

    Google Scholar 

  • Davison A, Birks JDS, Brookes RC, Braithwaite TC, Messenger JE (2002) On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J Zool 257:141–143

    Article  Google Scholar 

  • Del Fante S (2012) Comportamento spaziale della martora (Martes martes) in ambiente appenninico (Master degree). University of Pavia, Italy

    Google Scholar 

  • Delibes M (1983) Interspecific competition and the habitat of the stone marten Martes foina (Erxleben, 1777) in Europe. Acta Zool Fenn 174:229–231

    Google Scholar 

  • Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172

    Article  Google Scholar 

  • Dušek R, Popelková R (2012) Theoretical view of the Shannon index in the evaluation of landscape diversity. AUC Geogr 47:5–13

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  • Elith J, Graham H, Anderson CP, Dudík R, Ferrier M, Guisan SA, Hijmans J, Huettmann R, Leathwick FR, Lehmann J, Li A, Lohmann JG, Loiselle LA, Manion B, Moritz G, Nakamura C, Nakazawa M, Mc YCM, Overton J, Townsend Peterson A, Phillips J, Richardson S, Scachetti-Pereira K, Schapire RE, Soberón R, Williams J, Wisz SS, Zimmermann N (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fligner MA, Policello GE (1981) Robust rank procedures for the Behrens-fisher problem. J Am Stat Assoc 76:162–168

    Article  Google Scholar 

  • Fonda F, Torretta E, Balestrieri A, Pavanello M (2017) Time partitioning in pine- and stone marten from the Carnic Pre-alps (NE Alps). In: Book of Abstracts of the 32nd European Mustelid Colloquium, 15-17/11/2017, Lyon

  • Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox J, Monette G (1992) Generalized collinearity diagnostics. J Am Stat Assoc 87:178–183

    Article  Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol J R Meteorol Soc 18:873–900

    Article  Google Scholar 

  • Gaston KJ, David R (1994) Hotspots across Europe. Biodivers Lett 2:108–116

    Article  Google Scholar 

  • Gause GF (1934) Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science 79:16–17

    Article  CAS  PubMed  Google Scholar 

  • Gazzola A, Balestrieri A (2020) Nutritional ecology provides insights into competitive interactions between closely related Martes species. Mammal Rev 50:82–90

    Article  Google Scholar 

  • Genovesi P, Boitani L (1997) Day resting sites of the stone marten. Hystrix Ital J Mammal 9:75–78

    Google Scholar 

  • Genovesi P, De Marinis AM (2003) Martes martes. In: Fauna d’Italia, Mammalia III, Carnivora-Artiodactyla. Edizioni Calderini, Bologna, pp. 104–113

  • Genovesi, Piero, De Marinis AM (2003) Martes foina. In: Fauna d’Italia, Mammalia III, Carnivora-Artiodactyla. Edizioni Calderini, Bologna, pp. 113–123

  • Genovesi P, Secchi M, Boitani L (1996) Diet of stone martens: an example of ecological flexibility. J Zool 238:545–555

    Article  Google Scholar 

  • Goszczyński J, Posluszny M, Pilot M, Gralak B (2007) Patterns of winter locomotion and foraging in two sympatric marten species: Martes martes and Martes foina. Can J Zool 85:239–249

    Article  Google Scholar 

  • Gough MC, Rushton SP (2000) The application of GIS-modelling to mustelid landscape ecology. Mammal Rev 30:197–216. https://doi.org/10.1046/j.1365-2907.2000.00067.x

    Article  Google Scholar 

  • Herr J, Schley L, Roper TJ (2009) Socio-spatial organization of urban stone martens. J Zool 277:54–62. https://doi.org/10.1111/j.1469-7998.2008.00510.x

    Article  Google Scholar 

  • Herrmann M (1994) Habitat use and spatial organization by the stone marten. In: Buskirk S, Harestad AS, Raphael MG, Powell RA (eds) Martens, sables, and fishers: biology and conservation. Cornell University Press, Ithaca, New York, pp 122–136

    Google Scholar 

  • Hijmans RJ, van Etten J (2014) raster: geographic data analysis and modeling. R Package Version 2

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ (2017) Package ‘dismo.’ Circles 9

  • Hisano M (2018) Frugivory of the stone marten (Martes foina Erxl.) in Bulgaria—a review from an urban perspective. ZooNotes 119:1–4. https://doi.org/10.1080/21658005.2017.1412017

    Article  Google Scholar 

  • Hisano M, Raichev EG, Peeva S, Tsunoda H, Newman C, Masuda R, Georgiev DM, Kaneko Y (2016) Comparing the summer diet of stone martens (Martes foina) in urban and natural habitats in Central Bulgaria. Ethol Ecol Evol 28:295–311. https://doi.org/10.1080/03949370.2015.1048829

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:145–159

    Article  Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379

    Article  Google Scholar 

  • Krebs CJ (1999) Ecological methodology. Addison-Welsey Educational Publishers, Menlo Park, CA

    Google Scholar 

  • Lachat Feller N (1993) Utilisation des gîtes par la fouine (Martes foina) dans le Jura suisse. Z Saugetierkd 58:330–336

    Google Scholar 

  • Lanszki J (2003) Feeding habits of stone martens in a Hungarian village and its surroundings. Folia Zool 52:367–377

    Google Scholar 

  • Lanszki J, Körmendi S, Hancz C, Zalewski A (1999) Feeding habits and trophic niche overlap in a Carnivora community of Hungary. Acta Theriol 44:429–442

    Article  Google Scholar 

  • Lantschner MV, Atkinson TH, Corley JC, Liebhold AM (2017) Predicting North American Scolytinae invasions in the Southern Hemisphere. Ecol Appl 27:66–77

    Article  PubMed  Google Scholar 

  • Larroque J, Ruette S, Vandel J-M, Devillard S (2015) Where to sleep in a rural landscape? A comparative study of resting sites pattern in two syntopic Martes species. Ecography 38:1129–1140

    Article  Google Scholar 

  • Larroque J, Ruette S, Vandel J-M, Devillard S (2017) Level-and scale-dependent habitat selection for resting sites by 2 syntopic Martes species. J Mammal 98:1709–1720

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in global surface air temperature. Theor Appl Climatol 41:11–21

    Article  Google Scholar 

  • Legendre P, Legendre LF (2012) Numerical ecology. Elsevier, The Amsterdam

    Google Scholar 

  • Lewin-Koh NJ, Bivand R, Pebesma EJ, Archer E, Baddeley A, Bibiko HJ, Dray S, Forrest D, Friendly M, Giraudoux P (2011) Maptools: tools for reading and handling spatial objects. R Package Version 08-10 URL HttpCRAN R-Proj. Orgpackage Maptools

  • Little MA, Hanna JM (1978) The responses of high-altitude populations to cold and other stresses. In: Baker PT (ed) The biology of high altitude peoples. Cambridge Univ Press Cambridge, UK, Cambridge, pp 251–298

    Google Scholar 

  • Llorente-Rodríguez L, Nores-Quesada C, López-Sáez JA, Morales-Muniz A (2016) Hidden signatures of the Mesolithic-Neolithic transition in Iberia: the pine marten (Martes martes Linnaeus, 1758) and beech marten (Martes foina Erxleben, 1777) from Cova Fosca (Spain). Quat Int 403:174–186

    Article  Google Scholar 

  • Lodé T (1994) Environmental factors influencing habitat exploitation by the polecat Mustela putorius in western France. J Zool 234:75–88

    Article  Google Scholar 

  • Lombardini M, Murru M, Repossi A, Cinerari CE, Vidus Rosin A, Mazzoleni L, Meriggi A (2015) Spring diet of the pine marten in Sardinia. Italy Anim Biodivers Conserv 38:183–190

    Article  Google Scholar 

  • Marchesi P (1989) Ecologie et comportement de la martre (Martes martes L.) dans le Jura Suisse (PhD Thesis). University of Neuchatel

  • McCune JL (2016) Species distribution models predict rare species occurrences despite significant effects of landscape context. J Appl Ecol 53:1871–1879

    Article  Google Scholar 

  • McPherson J, Jetz W (2007) Effects of species’ ecology on the accuracy of distribution models. Ecography 30:135–151

    Google Scholar 

  • Mergey M, Helder R, Roeder J-J (2011) Effect of forest fragmentation on space-use patterns in the European pine marten (Martes martes). J Mammal 92:328–335

    Article  Google Scholar 

  • Meyer ALS, Pie MR, Passos FC (2014) Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. Am J Primatol 76:551–562. https://doi.org/10.1002/ajp.22247

    Article  PubMed  Google Scholar 

  • Michelat D (2001) Caractéristiques des gîtes utilisés par la fouine (Martes foina, Erxleben, 1777) dans Haut-Doubs. Rev Suisse Zool 108:263–274

    Article  Google Scholar 

  • Moenkkoenen M, Forsman JT (2002) Heterospecific attraction among forest birds: a review. Ornithol Sci 1:41–51

    Article  Google Scholar 

  • Monterroso P, Alves PC, Ferreras P (2014) Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: implications for species coexistence. Behav Ecol Sociobiol 68:1403–1417

    Article  Google Scholar 

  • Mosini A, Ruiz-González A, Piana M, Lupo G, Movalli C, Balestrieri A (2017) Into the wilderness: the expansion of the pine marten in the Val Grande National Park. In: Book of Abstracts of the 32nd European Mustelid Colloquium, 15-17/11/2017, Lyon

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENM eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205

    Article  Google Scholar 

  • Naimi B (2017) Usdm: uncertainty analysis for SDMs. R Package Version

  • Novikov GA (1962) Carnivorous mammals of the fauna of the USSR. Israel Program for Scientific Translations, Jerusalem

  • O’Donnell MS, Ignizio DA (2012) Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S. Geological Data Series 691

  • Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. Am Nat 153:492–508

    Article  CAS  PubMed  Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2006) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peterson AT (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38:817–827

    Article  Google Scholar 

  • Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modelling. In: Proceedings of the Twenty-First International Conference on Machine Learning. ACM, p. 83

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Pilot M, Gralak B, Goszczyński J, Posłuszny M (2007) A method of genetic identification of pine marten (Martes martes) and stone marten (Martes foina) and its application to faecal samples. J Zool 271:140–147. https://doi.org/10.1111/j.1469-7998.2006.00179.x

    Article  Google Scholar 

  • Pittiglio C (1996) Analisi comparativa di uso e selezione del habitat della faina e della martora in condizioni di simpatria (Master degree). University of Rome “La Sapienza,” Roma, Italy

  • Posillico M, Serafini P, Lovari S (1995) Activity patterns of the stone marten Martes foina Erxleben, 1777, in relation to some environmental factors. Hystrix Ital J Mammal 7:79–97

    Google Scholar 

  • Posluszny M, Pilot M, Goszczyński J, Gralak B (2007) Diet of sympatric pine marten (Martes martes) and stone marten (Martes foina) identified by genotyping of DNA from faeces. Ann Zool Fenn 44:269–284

    Google Scholar 

  • Prigioni C, Sommariva A (1997) Ecologia della faina Martes foina (Erxleben, 1777) nell’ambiente urbano di Cavalese (Trento). Cent. Ecol. Alp. 22

  • Prigioni C, Balestrieri A, Remonti L, Cavada L (2008) Differential use of food and habitat by sympatric carnivores in the eastern Italian Alps. Ital J Zool 75:173–184

    Article  Google Scholar 

  • Proulx G, Aubry K, Birks J, Buskirk S, Fortin C, Frost H, Krohn W, Mayo L, Monakhov V, Payer D (2004) World distribution and status of the genus Martes in 2000. In: Harrison DJ, Fuller AK, Proulx G (eds) Martens and Fishers (Martes) in Human-Altered Environments. Springer, Boston, pp. 21–76

  • Remonti L, Balestrieri A, Ruiz-González A, Gómez-Moliner BJ, Capelli E, Prigioni C (2012) Intraguild dietary overlap and its possible relationship to the coexistence of mesocarnivores in intensive agricultural habitats. Popul Ecol 54:521–532

    Article  Google Scholar 

  • Richard L, Tonnel A (1985) Contribution à l’étude bioclimatique de l’arc alpin. Doc Cartogr Écologique 28:33–64

    Google Scholar 

  • Rondinini C, Boitani L (2002) Habitat use by beech martens in a fragmented landscape. Ecography 25:257–264. https://doi.org/10.1034/j.1600-0587.2002.250301.x

    Article  Google Scholar 

  • Rosalino LM, Santos-Reis M (2009) Fruit consumption by carnivores in Mediterranean Europe. Mammal Rev 39:67–78

    Article  Google Scholar 

  • Ruiz-González A, Rubines J, Berdión O, Gómez-Moliner BJ (2008) A non-invasive genetic method to identify the sympatric mustelids pine marten (Martes martes) and stone marten (Martes foina): preliminary distribution survey on the northern Iberian Peninsula. Eur J Wildl Res 54:253–261. https://doi.org/10.1007/s10344-007-0138-7

    Article  Google Scholar 

  • Santos MJ, Santos-Reis M (2010) Stone marten (Martes foina) habitat in a Mediterranean ecosystem: effects of scale, sex, and interspecific interactions. Eur J Wildl Res 56:275–286. https://doi.org/10.1007/s10344-009-0317-9

    Article  Google Scholar 

  • Segurado P, Araujo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568

    Article  Google Scholar 

  • Sergio F, Pedrini P (2007) Biodiversity gradients in the Alps: the overriding importance of elevation. Biodivers Conserv 16:3243–3254

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x

    Article  PubMed  Google Scholar 

  • Stamps JA (1988) Conspecific attraction and aggregation in territorial species. Am Nat 131:329–347

    Article  Google Scholar 

  • Stamps JA (1991) The effect of conspecifics on habitat selection in territorial species. Behav Ecol Sociobiol 28:29–36

    Article  Google Scholar 

  • Stolar J, Nielsen SE (2015) Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers Distrib 21:595–608

    Article  Google Scholar 

  • Sutherland WJ (2006) Ecological census techniques: a handbook, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Torretta E, Mosini A, Piana M, Tirozzi P, Serafini M, Puopolo F, Saino N, Balestrieri A (2017) Time partitioning in mesocarnivore communities from different habitats of NW Italy: insights into martens’ competitive abilities. Behaviour 154:241–266

    Article  Google Scholar 

  • van Maanen E (2013) Onderscheid tussen boom- en steenmarter in de hand, in het veld en op foto. MASTERPASSEN XIX

  • Vercillo F, Ragni B (2010) La martora in Italia centrale: una misconosciuta in difficoltà? Workshop “Oltre i conflitti…”. Lo stato di conservazione del lupo e degli altri carnivori nell'Appennino centrale. Urbino, 22 Aprile 2010

  • Vergara M, Cushman SA, Urra F, Ruiz-González A (2016) Shaken but not stirred: multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula. Landsc Ecol 31:1241–1260. https://doi.org/10.1007/s10980-015-0307-0

    Article  Google Scholar 

  • Vergara M, Cushman SA, Madeira MJ, Ruiz-González A (2017) Living in sympatry on the edge: Assessing distribution, habitat suitability and niche partitioning for pine and stone marten (Martes martes and Martes foina) in the Iberian Peninsula. In: Zalewski A, Wierzbowska I, Aubry K, Birks J, O’Mahony DT, Proulx G (eds) The Martes Complex in the 21st century: ecology and conservation. Mammal Research, Institute Polish Academy of Science, Bialowieza, Poland, pp 1–15

    Google Scholar 

  • Virgós E, Casanovas JG (1998) Distribution patterns of the stone marten (Martes foina Erxleben, 1777) in Mediterranean mountains of central Spain. Z Saugetierkunde 63:193–199

    Google Scholar 

  • Virgós E, García FJ (2002) Patch occupancy by stone martens Martes foina in fragmented landscapes of central Spain: the role of fragment size, isolation and habitat structure. Acta Oecol 23:231–237. https://doi.org/10.1016/S1146-609X(02)01142-6

    Article  Google Scholar 

  • Virgós E, Recio MR, Cortes Y (2000) Wissenschaftliche Kurzmitteillungen-Stone marten (Martes foina Erxleben, 1777) use of different landscape types in the mountains of central Spain. Mamm Biol Z Saugetierkunde 65:375–379

    Google Scholar 

  • Virgós E, Zalewski A, Rosalino LM, Mergey M (2012) Habitat ecology of Martes species in Europe. In: Aubry K, Zielinski W, Proulx G, Buskirk S (eds) Biology and conservation of martens, sables, and fishers: a new synthesis. Cornell University Press, Ithaca, New York, pp 255–266

    Google Scholar 

  • Waechter A (1975) Ecologie de la fouine en Alsace. Terre Vie 29:399–457

    Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    Article  PubMed  Google Scholar 

  • Wereszczuk A, Zalewski A (2015) Spatial niche segregation of sympatric stone marten and pine marten—avoidance of competition or selection of optimal habitat? PLoS ONE 10:e0139852. https://doi.org/10.1371/journal.pone.0139852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RR, Prichard AK, Parrett LS, Person BT, Carroll GM, Smith MA, Rea CL, Yokel DA (2012) Summer resource selection and identification of important habitat prior to industrial development for the Teshekpuk Caribou Herd in northern Alaska. PLoS ONE 7:e48697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home range studies. Ecology 70:164–168

    Article  Google Scholar 

  • Worton BJ (1995) Using monte carlo simulation to evaluate kernel-based home range estimators. J Wildl Manag 59:794. https://doi.org/10.2307/3801959

    Article  Google Scholar 

  • Zalewski A (2004) Geographical and seasonal variation in food habits and prey size of European pine martens. In: Harrison DJ, Fuller AK, Proulx G (eds) Martens and fishers (Martes) in human-altered environments. Springer, London, UK, pp 77–98

    Google Scholar 

  • Zhao M, Alström P, Hu R, Zhao C, Hao Y, Lei F, Qu Y (2017) Phylogenetic relationships, song and distribution of the endangered Rufous-headed Robin Larvivora ruficeps. Ibis 159:204–216

    Article  Google Scholar 

  • Zub K, Kozieł M, Siłuch M, Bednarczyk P, Zalewski A (2018) The NATURA 2000 database as a tool in the analysis of habitat selection at large scales: factors affecting the occurrence of pine and stone martens in Southern Europe. Eur J Wildl Res 64:1–9. https://doi.org/10.1007/s10344-018-1168-z

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank—Marco Pavanello and Matteo De Luca and THERION Research Group—Elisa Torretta, Claudio Delfoco, Luca Riboldi and Francesco Zambuto (UniPV)—Matteo Toller—Paolo Tomè (As.Fa.Ve)—Enrico Vettorazzo (PNDB)—Michele Lanzinger, Paolo Pedrini and Maria Chiara Deflorian (MUSE)—Roberta Chirichella (PNAB)—Maria Ferloni (Prov. Sondrio)—Mauro Villa and Roberta Cucchi (Parco Orobie Bergamasche)—Manuel Piana (Valgrande Società Cooperativa)—Cristina Movalli and Carabinieri forestali (PNVG)—Antonio Mingozzi and Bruno Bassano (PNGP)—Massimo Bocca and Roberto Facchini (PN Mont Avic)—Giovanni Boano (Museo Civico di Storia Naturale di Carmagnola)—Andrea Battisti—Laura Martinelli (PN Alpi Marittime)—for their precious contribution to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Fonda.

Ethics declarations

Conflict of interest

We have no conflicts of interest/competing interests.

Additional information

Handling editor: Adriano Martinoli.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 541 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonda, F., Chiatante, G., Meriggi, A. et al. Spatial distribution of the pine marten (Martes martes) and stone marten (Martes foina) in the Italian Alps. Mamm Biol 101, 345–356 (2021). https://doi.org/10.1007/s42991-020-00098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-020-00098-8

Keywords

Navigation