Skip to main content
Log in

Influence of size gradation on particle separation and the motion behaviors of debris avalanches

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Debris avalanches have complex structures due to the internal discreteness of fragmentation events. From a meso perspective, a debris avalanche is essentially a collection of debris particles of various sizes. Friction and collision events are directly influenced by the gradation of debris particles, restricting the movement process of debris avalanches. Accordingly, a series of numerical simulations have been conducted to research the influence of motion behavior based on experimental tests. The results indicate that the inhomogeneous character of a debris avalanche creates a conducive particle structure for the movement of the debris avalanche, in which the fine particles can play a role in the conversion of sliding to rolling at the bottom, causing the reduction of friction dissipation and the differentiation of particle friction resistance along the vertical direction, which continues until deposition. Sudden decreases in friction resistance occurring on high-speed, fluid-like debris avalanches are primarily correlated to the particular particle structure due to the significant inhomogeneity of particle gradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. Journal of Geophysical Research Earth Surface 112(F1)

  • Crosta GB, Imposimato S, Roddeman D (2010) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng Geol 109(1–2):135–145

    Google Scholar 

  • Cundall PA, Strack ODL (2008) A discrete numerical model for granular assemblies. Geotechnique 30(3):331–336

    Article  Google Scholar 

  • Davies TRH (1982) Spreading of rock avalanche debris by mechanical fluidization. International Journal of Rock Mechanics & Mining ences & Geomechanics Abstracts 15(1):9–24

    Google Scholar 

  • Davies TR, McSaveney MJ (1999) Runout of dry granular avalanches. Can Geotech J 36(2):313–320

    Article  Google Scholar 

  • DEM-Solutions (2008) EDEMTM user manual. DEM Solutions (USA) Inc, Edinburgh

    Google Scholar 

  • Dufresne A, Salinas S, Siebe C (2010) Substrate deformation associated with the Jocotitlán edifice collapse and debris avalanche deposit, Central México. J Volcanol Geotherm Res 197(1–4):133–148

    Article  Google Scholar 

  • Dufresne A (2012) Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events. Earth Surf Process Landf 37(14):1527–1541

    Article  Google Scholar 

  • Eisbacher GH (1980) Cliff collapse and rock avalanches (Sturzstroms) in the Mackenzie mountains, northwestern Canada. International journal of rock mechanics & mining sciences & geomechanics abstracts 17(5):98

    Google Scholar 

  • Fan XY, Tian SJ, Zhang YY (2016) Front velocity of dry granular flows influenced by the angle of the slope to the run-out plane and particle size gradation. J Mt Sci 13(2):234–245

    Article  Google Scholar 

  • Goldhirsch I (2003) Rapid granular flows. Annu Rev Fluid Mech 35(1):267–293

    Article  Google Scholar 

  • Hao MH, Xu Q, Yang L, Yang XG, Zhou JW (2014) Physical modeling and movement mechanism of landslide-debris avalanches. Rock Soil Mech 35(S1):127–132 (in Chinese)

    Google Scholar 

  • Heim (1932) Bergsturz und Menschenleben. Zurich, Fretz and Was-muthVerlag 218p

  • Hu YX, Yu ZY, Zhou JW (2020a) Numerical simulation of landslide-generated waves during the 11 October 2018 Baige landslide at the Jinsha River. Landslides 17:2317–2328

    Article  Google Scholar 

  • Hu YX, Li HB, Qi SC, Fan G, Zhou JW (2020b) Granular effects on depositional processes of debris avalanches. KSCE J Civ Eng 24(4):1116–1127

    Article  Google Scholar 

  • Kent PE (1966) The transport mechanism in catastrophic rock falls. J Geol 74(1):79–83

    Article  Google Scholar 

  • Li HB, Qi SC, Yang XG, Li XW, Zhou JW (2020) Geological survey and unstable rock block movement monitoring of a post-earthquake high rock slope using terrestrial laser scanning. Rock Mech Rock Eng 53:4523–4537

    Article  Google Scholar 

  • Linares-Guerrero E, Goujon C, Zenit R (2007) Increased mobility of bidisperse granular avalanches. J Fluid Mech 593:475–504

    Article  Google Scholar 

  • Lube G, Huppert HE, Sparks RSJ, Hallworth MA (2004) Axisymmetric collapses of granular columns. J Fluid Mech 508:175–199

    Article  Google Scholar 

  • Manzella I, Labiouse V (2013) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation. Landslides 10(1):23–36

    Article  Google Scholar 

  • McDougall S, Boultbee N, Hungr O, Stead D, Schwab JW (2006) The zymoetz river landslide, British Columbia, Canada: description and dynamic analysis of a rock slide-debris flow. Landslides 3(3):195–204

    Article  Google Scholar 

  • Melosh HJ (1986) The physics of very large landslides. Acta Mech 64(1–2):89–99

    Article  Google Scholar 

  • Middleton GV (1976) Subaqueous sediment transport and deposition by sediment gravity flows. Marine Sediment Transport & Environmental Management:197–218

  • Phillips JC, Hogg AJ, Kerswell RR, Thomas NH (2006) Enhanced mobility of granular mixtures of fine and coarse particles. Earth Planet Sci Lett 246(3–4):466–480

    Article  Google Scholar 

  • Pudasaini SP, Miller SA (2013) The hypermobility of huge landslides and avalanches. Eng Geol 157:124–132

    Article  Google Scholar 

  • Rosato A, Strandburg KJ, Prinz F, Swendsen RH (1987) Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys Rev Lett 58(10):1038–1040

    Article  Google Scholar 

  • Reubi O, Ross PS, White JDL (2005) Debris avalanche deposits associated with large igneous province volcanism: an example from the mawson formation, central allan hills, Antarctica. Geol Soc Am Bull 117(11–12):1615–1628

    Article  Google Scholar 

  • Savage SB, Lun CKK (1988) Particle size segregation in inclined chute flow of dry cohesionless granular solids. Journal of fluid mechanics, 189(−1), 311-335

  • Shreve RL (1968) Leakage and fluidization in air-layer lubricated avalanches. Geol Soc Am Bull 79(5):653

    Article  Google Scholar 

  • Teufelsbauer H, Wang Y, Pudasaini SP, Borja RI, Wu W (2011) DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotech 6(3):119–133

    Article  Google Scholar 

  • Vardoulakis I (2015) Catastrophic landslides due to frictional heating of the failure plane. Mechanics of Cohesive-Frictional Materials 5(6):443–467

    Article  Google Scholar 

  • Wang GH, Huang RQ, Chigira M, Wu XY, Lourenco S (2013) Landslide amplification by liquefaction of runout-path material after the 2008 Wenchuan (M 8.0) earthquake, China. Earth Surface Process and Landforms 38(3):265–274

    Article  Google Scholar 

  • Weidinger JT, Korup O, Munack H, Altenberger U, Dunning SA, Tippelt G, Lottermoser W (2014) Giant rock slides from the inside. Earth and Planet Science Letters 389:62–73

    Article  Google Scholar 

  • Yang Q, Su Z, Cai F, Ugai K (2015) Enhanced mobility of polydisperse granular flows in a small flume. Geoenvironmental Disasters 2(1):12–20

    Article  Google Scholar 

  • Zheng G, Xu Q, Ju YZ, Li WL, Zhou XP, Peng SQ (2018) The Pusacun rock avalanche on august 28, 2017 in Zhangjiawan Nayongxian, Guizhou: characteristics and failure mechanism. J Eng Geol 26(1):223–240 (in Chinese)

    Google Scholar 

  • Zhou YC, Wright BD, Yang RY, Xu BH, Yu AB (1999) Rolling friction in the dynamic simulation of sandpile formation. Physica A 269(2–4):536–553

    Article  Google Scholar 

  • Zhou JW, Cui P, Fang H (2013) Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake, China. Landslides 10(3):331–342

    Article  Google Scholar 

  • Zhou J-W, Cui P, Hao M-H (2016) Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides 13 (1):39–54

  • Zhou J-W, Li HB, Lu GD, Zhou Y, Zhang JY, Fan G (2020) Initiation mechanism and quantitative mass movement analysis of the 2019 Shuicheng catastrophic landslide. Q J Eng Geol Hydrogeol. https://doi.org/10.1144/qjegh2020-052

Download references

Funding

We gratefully acknowledge the support of the National Key R&D Program of China (2017YFC1501102), the National Natural Science Foundation of China (41977229), and the Sichuan Youth Science and Technology Innovation Research Team Project (2020JDTD0006). Critical comments by the anonymous reviewers greatly improved the initial manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-wen Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Yx., Li, Hb., Lu, Gd. et al. Influence of size gradation on particle separation and the motion behaviors of debris avalanches. Landslides 18, 1845–1858 (2021). https://doi.org/10.1007/s10346-020-01596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-020-01596-z

Keywords

Navigation