Skip to main content

Advertisement

Log in

Unfavorable energy integration of reactive dividing wall column for simultaneous esterification reactions

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Thermal integration in a reactive dividing wall column (RDWC) can dramatically reduce energy consumption. This study, however, addresses unfavorable energy integration of the concurrent esterification of butyl, amyl, and hexyl alcohols in the RDWC. The reaction kinetics and vapor-liquid-liquid equilibrium of reactive mixtures are utilized to assess the feasibility of energy integration in a multi-partitioned RDWC. The thermal integration effect of an RDWC is elucidated by comparing its energy efficiency with that of the direct sequential configuration of a reactive distillation column followed by a non-reactive distillation column. The unfavorable thermal integration in the RDWC originates from the large internal flow to satisfy the product purities. Therefore, a single RDWC sequence showed higher energy consumption and total annual cost than the direct RD sequence for the simultaneous triple esterification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RD:

reactive distillation [-]

DWC:

dividing wall column [-]

RDWC:

reactive dividing wall column [-]

URDWC:

upper reactive dividing wall column [-]

AC:

acetic acid [-]

BuAC:

n-butyl acetate [-]

BuOH:

n-butyl alcohol [-]

AmAC:

n-amyl acetate [-]

AmOH:

n-amyl alcohol [-]

HexAC:

n-hexyl acetate [-]

HexOH:

n-hexyl alcohol [-]

TAC:

total annual cost [103 $/yr]

TUC:

total utility consumption [kW]

References

  1. A. I. Stankiewicz and J. A. Moulijn, Chem. Eng. Prog, 96, 22 (2000).

    CAS  Google Scholar 

  2. F. J. Novita, H. Y Lee and M. Lee, Korean J. Chem. Eng, 35, 926 (2018).

    Article  CAS  Google Scholar 

  3. D. Kang and J. W. Lee, Appl. Catal. B-Environ, 186, 41 (2016).

    Article  CAS  Google Scholar 

  4. N. V. D. Long, S. Lee and M. Lee, Chem. Eng. Process. Process Intensif., 49, 825 (2010).

    Article  Google Scholar 

  5. M. F. Malone and M. F. Doherty, Ind. Eng. Chem. Res., 39, 3953 (2000).

    Article  CAS  Google Scholar 

  6. J. W. Lee, S. Hauan, K. M. Lien and A. W. Westerberg, Proc. R. Soc. A, 456, 1953 (2000).

    Article  CAS  Google Scholar 

  7. J. W. Lee, S. Hauan, K. M. Lien and A. W. Westerberg, Proc. R. Soc. A, 456, 1965 (2000).

    Article  CAS  Google Scholar 

  8. H. Im, J. Park and J. W. Lee, Korean J. Chem. Eng, 36, 1680 (2019).

    Article  CAS  Google Scholar 

  9. J. W. Lee, Y. C. Ko, Y. K. Jung, K. S. Lee and E. S. Yoon, Comput. Chem. Eng., 21, S1105 (1997).

    Article  Google Scholar 

  10. M. Nakaiwa, K. Huang, A. Endo, T. Ohmori, T. Akiya and T. Takamatsu, Chem. Eng. Res. Des., 81, 162 (2003).

    Article  CAS  Google Scholar 

  11. F. Qasim, J. S. Shin and S. J. Park, Korean J. Chem. Eng., 35, 1185 (2018).

    Article  CAS  Google Scholar 

  12. J. W. Lee and A. W Westerberg, AIChE J., 47, 1333 (2001).

    Article  CAS  Google Scholar 

  13. R. S. Hiwale, N. V Bhate, Y. S. Mahajan and S. M. Mahajani, Inf. J. Chem. React. Eng., 2, 1 (2004).

    Google Scholar 

  14. M. A. Navarro, J. Javaloyes, J. A. Caballero and I. E. Grossmann, Comput. Chem. Eng, 36, 149 (2012).

    Article  CAS  Google Scholar 

  15. Ö. Yildirim, A. A. Kiss and E. Y. Kenig, Sep. Purif. Technol., 80, 403 (2011).

    Article  CAS  Google Scholar 

  16. K. Namgung, H. Lee, W. Jang, H. Mo and J.W. Lee, Chem. Eng. Process. Process Intensif., 154, 108048 (2020).

    Article  CAS  Google Scholar 

  17. I. Mueller and E. Y. Kenig, Ind. Eng. Chem. Res., 46, 3709 (2007).

    Article  CAS  Google Scholar 

  18. D. Kang and J. W. Lee, Ind. Eng. Chem. Res., 54, 3175 (2015).

    Article  CAS  Google Scholar 

  19. H. Lee, W. Jang and J.W. Lee, Korean J. Chem. Eng., 36, 954 (2019).

    Article  CAS  Google Scholar 

  20. H. Li, T. Li, C. Li, J. Fang and L. Dong, Chin. J. Chem. Eng., 27, 136 (2019).

    Article  CAS  Google Scholar 

  21. A. A. Kiss and J.-P. C. S. David, Comput. Chem. Eng, 38, 74 (2012).

    Article  CAS  Google Scholar 

  22. L. Zheng, W. Cai, X. Zhang and Y. Wang, Chem. Eng. Process., 111, 127 (2017).

    Article  CAS  Google Scholar 

  23. W. Jang, H. Lee, J. Han and J. W. Lee, Ind. Eng. Chem. Res., 58, 8206 (2019).

    Article  CAS  Google Scholar 

  24. W. Jang, K. Namgung, H. Lee, H. Mo and J. W. Lee, Ind. Eng. Chem. Res., 59, 1966 (2020).

    Article  CAS  Google Scholar 

  25. M. J. Lee, H. T. Wu and H. Lin, Ind. Eng. Chem. Res., 39, 4094 (2000).

    Article  CAS  Google Scholar 

  26. M. Schmitt and H. Hasse, Ind. Eng. Chem. Res., 45, 4123 (2006).

    Article  CAS  Google Scholar 

  27. Y. C. Wu, H. Y. Lee, C. H. Lee, H. P. Huang and I. L. Chien, Ind. Eng. Chem. Res., 52, 17184 (2013).

    Article  CAS  Google Scholar 

  28. H.Y. Lee, L.T. Yen, I.L. Chien and H.P. Huang, Ind. Eng. Chem. Res., 48, 7186 (2009).

    Article  CAS  Google Scholar 

  29. M.I.A. Mutalib and R. Smith, Chem. Eng. Res. Des., 76, 308 (1998).

    Article  CAS  Google Scholar 

  30. W. L. Luyben, Distillation design and control using aspen simulation, John Wiley & Sons, Hoboken, New Jersey (2013).

    Book  Google Scholar 

Download references

Acknowledgements

This work was performed under the framework; of the Research and Development Program of the Korea Institute of Energy Research (KIER) (C0-2427-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae W. Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, H., Lee, H., Jang, W. et al. Unfavorable energy integration of reactive dividing wall column for simultaneous esterification reactions. Korean J. Chem. Eng. 38, 195–203 (2021). https://doi.org/10.1007/s11814-020-0682-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0682-3

Keywords

Navigation