Skip to main content

Advertisement

Log in

Electrochemical analysis on how structural and compositional modification of electrode affects power generation in reverse electrodialysis

  • MATERIALS (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We suggest a modified Ti-based electrode for reverse electrodialysis to increase power density and retain long-term durability. Specifically, a mesh-type Ti electrode and electrochemically fabricated Pt/Ti electrode are employed in the reverse electrodialysis single cell. The electrode systems are compared in terms of power output, resistance, specific capacitance, and redox-couple reaction kinetics near the electrode surface. Among the electrodes, Pt/Ti mesh-embedded cell exhibits the highest jmax(−16.13 A m−2) and Pmax(−0.702 W m−2). The improvement in performance is ascribed to the reduced resistance associated with heterogeneous charge transfer and to the enlarged electrochemical surface area, verified by impedance analysis, and by monitoring the capacitive behavior of the electrodes, respectively. The highest exchange current density of Pt/Ti mesh electrode is attributed to facile electron transfer and reduced power loss in the electrode compartment. Furthermore, the Pt/Ti mesh electrode allows stable operation of reverse electrodialysis for an extended time. Finally, we demonstrate the power generation of a reverse electrodialysis stack built up with multiple pairs of ion exchange membranes for potential commercial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Pattle, Nature, 174, 660 (1954).

    Article  CAS  Google Scholar 

  2. S. Loeb and R. S. Norman, Science, 189, 654 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. S. Loeb, J. Membr. Sci., 1, 49 (1976).

    Article  Google Scholar 

  4. T. Thorsen and T. Holt, J. Membr. Sci., 335, 103 (2009).

    Article  CAS  Google Scholar 

  5. R. E. Pattle, Chem. Prog. Eng., 35, 351 (1955).

    Google Scholar 

  6. G. L. Wick and W. R. Schmitt, Mar. Technol. Soc. J., 11, 16 (1977).

    Google Scholar 

  7. J. W. Post, H. V. M. Hamelers and C. J. N. Buisman, Environ. Sci. Technol., 42, 5785 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. J. Veerman, M. Saakes, S. J. Metz and G. J. Harmsen, Chem. Eng. J., 166, 256 (2011).

    Article  CAS  Google Scholar 

  9. J. N. Weinstein and F. B. Leitz, Science, 191, 557 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. R. E. Lacey, Ocean Engng., 7, 1 (1980).

    Article  CAS  Google Scholar 

  11. P. Dlugolecki, K. Nymeijer, S. J. Metz and M. Wessling, J. Membr. Sci., 319, 214 (2008).

    Article  CAS  Google Scholar 

  12. J. Veerman, R. M. de Jong, M. Saakes, S. J. Metz and G. J. Harmsen, J. Membr. Sci., 343, 7 (2009).

    Article  CAS  Google Scholar 

  13. D. A. Vermass, M. Saakes and K. Nijmeijer, J. Membr. Sci., 385–386, 234 (2011).

    Article  CAS  Google Scholar 

  14. D. A. Vermass, M. Saakes and K. Nijmeijer, J. Membr. Sci., 453, 312 (2014).

    Article  CAS  Google Scholar 

  15. E. Guler, R. Elizen, M. Saakes and K. Nijmeijer, J. Membr. Sci., 458, 136 (2014).

    Article  CAS  Google Scholar 

  16. K. Kwon, S. J. Lee, L. Li, C. Han and D. Kim, Int. J. Energy Res., 38, 530 (2014).

    Article  CAS  Google Scholar 

  17. J. G. Hong and Y. Chen, J. Membr. Sci., 460, 139 (2014).

    Article  CAS  Google Scholar 

  18. E. Guler, Y. Zhang, M. Saakes and K. Nijmeijer, ChemSusChem, 5, 2262 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. P. Dlugolecki, A. Gambier, K. Nijmeijer and M. Wessling, Environ. Sci. Technol., 43, 6888 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. D. A. Vermass, M. Saakes and K. Nijmeijer, Environ. Sci. Technol., 45, 7089 (2011).

    Article  CAS  Google Scholar 

  21. P. Dlugolecki, J. Dabrowska, K. Nijmeijer and M. Wessling, J. Membr. Sci., 347, 101 (2010).

    Article  CAS  Google Scholar 

  22. J. Balster, D. F. Stamatialis and M. Wessling, J. Membr. Sci., 360, 185 (2010).

    Article  CAS  Google Scholar 

  23. D.-K. Kim, C. Duan, Y.-F. Chem and A. Majumdar, Microfluid. Nanofluid., 9, 1215 (2010).

    Article  CAS  Google Scholar 

  24. J. Jagur-Grodzinski and R. Kramer, Ind. Eng. Chem. Process. Des. Dev., 25, 443 (1986).

    Article  CAS  Google Scholar 

  25. M. Turek and B. Bandura, Desalination, 205, 67 (2007).

    Article  CAS  Google Scholar 

  26. J. Veerman, J. W. Post, M. Saakes, S. J. Metz and G. J. Harmsen, J. Membr. Sci., 310, 418 (2008).

    Article  CAS  Google Scholar 

  27. J. Veerman, M. Saakes, S. J. Metz and G. J. Harmsen, J. Appl. Electrochem., 40, 1461 (2010).

    Article  CAS  Google Scholar 

  28. O. S. Burheim, F. Seland, J. G. Pharoah and S. Kjelstrup, Desalination, 285, 147 (2012).

    Article  CAS  Google Scholar 

  29. O. Scialdone, C. Guarisco, S. Grispo, A. D. Angelo and A. Galia, J. Electroanal. Chem., 681, 66 (2012).

    Article  CAS  Google Scholar 

  30. F. Suda, T. Matsuo and D. Ushioda, Energy, 32, 165 (2007).

    Article  CAS  Google Scholar 

  31. D. A. Vermass, S. Bajracharya, B. B. Sales, M. Saakes, B. Hamelers and K. Nijmeijer, Energy Environ. Sci., 6, 643 (2013).

    Article  Google Scholar 

  32. I. Choi, J. Y. Han, S. J. Yoo, D. Henkensmeier, J. Y. Kim, S. Y. Lee, J. Han, S. W. Nam, H.-J. Kim and J. H. Jang, Bull. Kor. Chem. Soc., 37, 1010 (2016).

    Article  CAS  Google Scholar 

  33. K. S. Kim, W. Ryoo, M.-S. Chun and G.-Y. Chung, Desalination, 318, 79 (2013).

    Article  CAS  Google Scholar 

  34. S. Pawlowski, J. G. Crespo and S. Velizarov, J. Membr. Sci., 462, 96 (2014).

    Article  CAS  Google Scholar 

  35. D. A. Vermass, J. Veerman, N. Y. Yip, M. Elimelech, M. Saakes and K. Nijmeijer, ACS Sustain. Chem. Eng., 1, 1295 (2013).

    Article  CAS  Google Scholar 

  36. L. Gurreri, A. Tamburini, A. Cipollina, G. Micale and M. Ciofalo, J. Membr. Sci., 468, 133 (2014).

    Article  CAS  Google Scholar 

  37. M. Tedesco, A. Cipollina, A. Tamburini, I. D. L. Bogle and G. Micale, Chem. Eng. Res. Des., 93, 441 (2015).

    Article  CAS  Google Scholar 

  38. M. Tedesco, A. Cipollina, A. Tamburini, W. van Baak and G. Micale, Desalin. Water Treat., 49, 404 (2012).

    Article  CAS  Google Scholar 

  39. J. G. Hong, W. Zhang and Y. Chen, Appl. Energy, 110, 244 (2013).

    Article  CAS  Google Scholar 

  40. R. Audinos, J. Power Sources, 10, 203 (1983).

    Article  CAS  Google Scholar 

  41. H. Park, K. M. Kim, H. Kim, D.-K. Kim, Y.S. Won, and S.-K. Kim, Korean J. Chem. Eng., 35(7), 1547 (2018).

    Article  CAS  Google Scholar 

  42. K. Zhou, C. Y. An, P. K. Kannan, N. Seo, Y.-S. Park and C.-H. Chung, Korean J. Chem. Eng., 34(5), 1483 (2017).

    Article  CAS  Google Scholar 

  43. A. Daniilidis, D. A. Vermass, R. Herber and K. Nijmeijer, Renew. Energy, 64, 123 (2014).

    Article  CAS  Google Scholar 

  44. X. Zhu, W. He and B. E. Logan, J. Membr. Sci., 494, 154 (2015).

    Article  CAS  Google Scholar 

  45. J -S. Park, J.-H. Choi, J.-J. Woo and S.-H. Moon, J. Colloid Interface Sci., 300, 655 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. D. Quéré, Annu. Rev. Mater. Res., 38, 71 (2008).

    Article  CAS  Google Scholar 

  47. S. J. Hitchcock, N. T. Carroll and M. G. Nicholas, J. Mater. Sci., 16, 714 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by the Korea Electric Power Corporation (Grant number: R19XO01-02) and the Ministry of Science & ICT (NRF-2019R1I1A3A01063882). The study was also financially supported by 2018 Research Grant from Kangwon National University (No. 620180016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insoo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, J., Song, H. & Choi, I. Electrochemical analysis on how structural and compositional modification of electrode affects power generation in reverse electrodialysis. Korean J. Chem. Eng. 38, 170–178 (2021). https://doi.org/10.1007/s11814-020-0690-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0690-3

Keywords

Navigation