Skip to main content
Log in

Functionalization of kaolin clay with silver nanoparticles by Murraya koenigii fruit extract-mediated bioreduction process for antimicrobial applications

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The emergence of multidrug-resistant microbes and newly outbreaking diseases are one of the major threats before mankind. This paves the way for researchers to explore new antimicrobial agents that possess common day-to-day applications. In this concern, we have fabricated the antimicrobial Ag-kaolin functional nanostructures by simple and sustainable protocol employing Murraya koenigii fruit extract. UV-visible spectra (UV-Vis) of the Ag-kaolin exhibit absorption peak at 430 nm which corresponds to the characteristic surface plasmon resonance of Ag nanoparticles. X-ray diffraction pattern (XRD) shows the diffraction peak at 37.6° confirms their face-centred cubic nature with (111) plane. Furthermore, the formation of Ag-kaolin functional nanostructures was confirmed through a scanning electron microscope (SEM) and energy-dispersive X-ray spectrum (EDX) analysis. The transmission electron microscopic (TEM) studies reveal the effective formation of quasi-spherical monodispersed Ag nanoparticles having 20–30-nm diameters on the kaolin clay. The bio-synthesized Ag-kaolin nanostructures showed excellent antimicrobial activity against pathogenic gram-positive (Staphylococcus aureus, Bacillus subtilis) and gram-negative (Escherichia coli) bacteria respectively with the inhibition zones of 26 mm, 25 mm and 30 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bergaya, F., Lagaly, G.: General introduction: clays, clay minerals, and clay science. In: Bergaya, F., Theng, B.K.G., Lagaly, G. (eds.) Handbook of clay science, pp. 1–18. Elsevier, Oxford (2006)

    Google Scholar 

  2. Murray, H.H.: Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci. 17, 207–221 (2000). https://doi.org/10.1016/S0169-1317(00)00016-8

    Article  CAS  Google Scholar 

  3. Murray, H.H.: Overview—clay mineral applications. Appl Clay Sci. 5, 379–395 (1991). https://doi.org/10.1016/0169-1317(91)90014-Z

    Article  CAS  Google Scholar 

  4. Carretero, M.I.: Clay minerals and their beneficial effects upon human health. A review. Appl Clay Sci. 21, 155–163 (2002). https://doi.org/10.1016/S0169-1317(01)00085-0

    Article  CAS  Google Scholar 

  5. Martynková, G.S., Valášková, M.: Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays. J Nanosci Nanotechnol. 14, 673–693 (2014). https://doi.org/10.1166/jnn.2014.8903

    Article  CAS  Google Scholar 

  6. Gaskell, E.E., Hamilton, A.R.: Antimicrobial clay-based materials for wound care. Future Med Chem. 6, 641–655 (2014). https://doi.org/10.4155/fmc.14.17

    Article  CAS  Google Scholar 

  7. Bergaya, F., Theng, B., Lagaly, G.: Modified clays and clay minerals. In: Bergaya, F., Theng, B.K.G., Lagaly, G. (eds.) Handbook of clay science, pp. 261–422. Elsevier, Oxford (2006)

    Chapter  Google Scholar 

  8. Hong, S.I., Rhim, J.W.: Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol. 8, 5818–5824 (2008). https://doi.org/10.1166/jnn.2008.248

    Article  CAS  Google Scholar 

  9. Ummartyotin, S., Bunnak, N., Manuspiya, H.: A comprehensive review on modified clay based composite for energy based materials. Renew Sust Energ Rev. 61, 466–472 (2016). https://doi.org/10.1016/j.rser.2016.04.022

    Article  CAS  Google Scholar 

  10. Uddin, M.K.: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J. 308, 438–462 (2017). https://doi.org/10.1016/j.cej.2016.09.029

    Article  CAS  Google Scholar 

  11. Liz-Marzán, L.M.: Nanometals: formation and color. Mater Today. 7, 26–31 (2004). https://doi.org/10.1016/S1369-7021(04)00080-X

    Article  Google Scholar 

  12. Girase, B., Depan, D., Shah, J., Xu, W., Misra, R.: Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng. 31, 1759–1766 (2011). https://doi.org/10.1016/j.msec.2011.08.007

    Article  CAS  Google Scholar 

  13. Yakub, I., Soboyejo, W.: Adhesion of E. coli to silver-or copper-coated porous clay ceramic surfaces. J Appl Phys. 111, 124324 (2012). https://doi.org/10.1063/1.4722326

    Article  CAS  Google Scholar 

  14. Pillai, S.K., Ray, S.S., Scriba, M., Bandyopadhyay, J., Roux-van der Merwe, M.P., Badenhorst, J.: Microwave assisted green synthesis and characterization of silver/montmorillonite heterostructures with improved antimicrobial properties. Appl Clay Sci. 83, 315–321 (2013). https://doi.org/10.1016/j.clay.2013.08.014

    Article  CAS  Google Scholar 

  15. Hariram, M., Vivekanandhan, S.: Phytochemical process for the functionalization of materials with metal nanoparticles: current trends and future perspectives. ChemistrySelect. 3, 13561–13585 (2018). https://doi.org/10.1002/slct.201802748

    Article  CAS  Google Scholar 

  16. Vishnukumar, P., Vivekanandhan, S., Misra, M., Mohanty, A.: Recent advances and emerging opportunities in phytochemical synthesis of ZnO nanostructures. Mater Sci Semicond Process. 80, 143–161 (2018). https://doi.org/10.1016/j.mssp.2018.01.026

    Article  CAS  Google Scholar 

  17. Saikia, I., Sonowal, S., Pal, M., Boruah, P.K., Das, M.R., Tamuly, C.: Biosynthesis of gold decorated reduced graphene oxide and its biological activities. Mater Lett. 178, 239–242 (2016). https://doi.org/10.1016/j.matlet.2016.05.011

    Article  CAS  Google Scholar 

  18. Sadanand, V., Rajini, N., Rajulu, A.V., Satyanarayana, B.: Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties. Carbohydr Polym. 150, 32–39 (2016). https://doi.org/10.1016/j.carbpol.2016.04.121

    Article  CAS  Google Scholar 

  19. Nasrollahzadeh, M., Sajadi, S.M.: Green synthesis, characterization and catalytic activity of the Pd/TiO2 nanoparticles for the ligand-free Suzuki–Miyaura coupling reaction. J Colloid Interface Sci. 465, 121–127 (2016). https://doi.org/10.1016/j.jcis.2015.11.038

    Article  CAS  Google Scholar 

  20. Hatamifard, A., Nasrollahzadeh, M., Sajadi, S.M.: Biosynthesis, characterization and catalytic activity of an Ag/zeolite nanocomposite for base-and ligand-free oxidative hydroxylation of phenylboronic acid and reduction of a variety of dyes at room temperature. New J Chem. 40, 2501–2513 (2016). https://doi.org/10.1039/C5NJ02909K

    Article  CAS  Google Scholar 

  21. Rostami-Vartooni, A., Nasrollahzadeh, M., Alizadeh, M.: Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J Colloid Interface Sci. 470, 268–275 (2016). https://doi.org/10.1016/j.jcis.2016.02.060

    Article  CAS  Google Scholar 

  22. Nasrollahzadeh, M., Sajadi, S.M., Hatamifard, A.: Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Appl Catal B. 191, 209–227 (2016). https://doi.org/10.1016/j.apcatb.2016.02.042

    Article  CAS  Google Scholar 

  23. Hariram, M., Vivekanandhan, S., Ganesan, V., Muthuramkumar, S., Rodriguez-uribe, A., Mohanty, A.K., Misra, M.: Tecoma stans flower extract assisted biogenic synthesis of functional Ag-Talc nanostructures for antimicrobial applications. Bioresour Technol Rep. 7, 100298 (2019). https://doi.org/10.1016/j.biteb.2019.100298

    Article  Google Scholar 

  24. Sohrabnezhad, S., Rassa, M., Seifi, A.: Green synthesis of Ag nanoparticles in montmorillonite. Mater Lett. 168, 28–30 (2016). https://doi.org/10.1016/j.matlet.2016.01.025

    Article  CAS  Google Scholar 

  25. Sohrabnezhad, S., Seifi, A.: The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity. Appl Surf Sci. 386, 33–40 (2016). https://doi.org/10.1016/j.apsusc.2016.05.102

    Article  CAS  Google Scholar 

  26. Issaabadi, Z., Nasrollahzadeh, M., Sajadi, S.M.: Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity. J Clean Prod. 142, 3584–3591 (2017). https://doi.org/10.1016/j.jclepro.2016.10.109

    Article  CAS  Google Scholar 

  27. Saikia, P.K., Bhattacharjee, R.P., Sarmah, P.P., Saikia, L., Dutta, D.K.: A green synthesis of Pd nanoparticles supported on modified montmorillonite using aqueous Ocimum sanctum leaf extract: a sustainable catalyst for hydrodechlorination of 4-chlorophenol. RSC Adv. 6, 110011–110018 (2016). https://doi.org/10.1039/C6RA22788K

    Article  CAS  Google Scholar 

  28. Christensen, L., Vivekanandhan, S., Misra, M., Mohanty, A.K.: Biosynthesis of silver nanoparticles using murraya koenigii (curry leaf): an investigation on the effect of broth concentration in reduction mechanism and particle size. Adv Mat Lett. 2, 429–434 (2011). https://doi.org/10.5185/amlett.2011.4256

    Article  CAS  Google Scholar 

  29. Vivekanandhan, S., Christensen, L., Misra, M., Mohanty, A.K.: Green process for impregnation of silver nanoparticles into microcrystalline cellulose and their antimicrobial bionanocomposite films. J Biomater Nanobiotechnol. 3, 371 (2012). https://doi.org/10.4236/jbnb.2012.33035

    Article  CAS  Google Scholar 

  30. Vivekanandhan, S., Tang, D., Misra, M., Mohanty, A.K.: Novel glycine max (soybean) leaf extract based biological process for the functionalization of carbon nanotubes with silver nanoparticles. Nanosci Nanotechnol Lett. 2, 240–243 (2010). https://doi.org/10.1166/nnl.2010.1087

    Article  CAS  Google Scholar 

  31. Marambio-Jones, C., Hoek, E.M.: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 12, 1531–1551 (2010). https://doi.org/10.1007/s11051-010-9900-y

    Article  CAS  Google Scholar 

  32. Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S.: A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 7, 17–28 (2016). https://doi.org/10.1016/j.jare.2015.02.007

    Article  CAS  Google Scholar 

  33. Rai, M., Yadav, A., Gade, A.: Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 27, 76–83 (2009). https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.V. acknowledges the University Grants Commission (UGC), Delhi, India, for the financial support for this research activity through the Minor Research Project (MRP/UGC-SERO-Proposal No.: 1593). The authors express sincere thanks to Sophisticated Test and Instrumentation Centre (STIC), Cochin University of Science and Technology, Cochin, Kerala, India, for providing their valuable support through various analytical services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vivekanandhan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariram, M., Ganesan, V., Muthuramkumar, S. et al. Functionalization of kaolin clay with silver nanoparticles by Murraya koenigii fruit extract-mediated bioreduction process for antimicrobial applications. J Aust Ceram Soc 57, 505–513 (2021). https://doi.org/10.1007/s41779-020-00545-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00545-2

Keywords

Navigation