Skip to main content
Log in

Stress rupture of fiber-reinforced ceramic-matrix composites subjected to different stochastic loading spectrums at intermediate temperatures

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this paper, stress rupture of fiber-reinforced ceramic-matrix composites (CMCs) subjected to different stochastic loading spectrums at intermediate temperatures (600 to 1000 °C) is investigated. Under stress rupture at stress level higher than the first matrix cracking stress, multiple damage mechanisms of matrix cracking, fiber/matrix interface debonding, interphase and fiber oxidation, and fiber fracture are considered to analyze evolution of composite strain. Four different stochastic loading spectrums are considered in the analysis of damage evolution and lifetime of fiber-reinforced CMCs under stress rupture loading. Relationships between stochastic loading stress, frequency, time, interface debonding and oxidation length, fiber failure probability, and stress rupture lifetime are established. Effects of stochastic loading stress and time, fiber volume, matrix crack spacing, interface debonding energy, interface shear stress, and temperature on composite strain, interface debonding and oxidation length, and the fiber failure probability versus time are analyzed. Experimental stress rupture strain and lifetime of SiC/SiC composite under constant stress and stochastic loading spectrums are predicted. When the stochastic loading stress, frequency, and temperature increase, the stress rupture lifetime and the time for the interface complete debonding and oxidation all decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

ζ :

fiber/matrix interface oxidation length

l d :

fiber/matrix interface debonding length

l c :

matrix crack spacing

r f :

fiber radius

τ i :

fiber/matrix interface shear stress in the slip region

τ f :

fiber/matrix interface shear stress in the oxidation region

ФS :

intact fiber stress

ρ :

shear-lag model parameter

E f :

fiber elastic modulus

E m :

matrix elastic modulus

E c :

composite elastic modulus

α :

coefficient of linear thermal expansion

ΔT:

temperature change from “stress-free” temperature

V :

volume fraction

σ S :

stochastic loading stress

σ R :

matrix cracking characteristic strength

σ mc :

matrix first cracking stress

σ th :

matrix thermal residual stress

Λ:

final nominal matrix crack space

m :

matrix Weibull modulus

ξ d :

fiber/matrix interface debonding energy

w f :

fiber axial displacement

v :

relative displacement between the fiber and the matrix

P :

fiber failure probability

σ c :

fiber characteristic strength

m f :

fiber Weibull modulus

ε c :

composite strain

f:

fiber

m:

matrix

c:

composite

References

  1. Padture, N.P.: Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804 (2016)

    Article  CAS  Google Scholar 

  2. Eryilmaz, I., Guenchi, B., Pachidis, V.: Multi-blade shedding in turbines with different casing and blade tip architectures. Aerosp. Sci. Technol. 87, 300–310 (2019)

    Article  Google Scholar 

  3. Li, L.B.: Comparisons of thermomechanical fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites subjected to different phase angle. P I Mech. Eng. C – J. Mec. 233, 2015–2032 (2019)

    Article  Google Scholar 

  4. Pollock, T.M., Tin, S.: Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propuls. Power. 22, 361–374 (2006)

    Article  CAS  Google Scholar 

  5. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos. Sci. Technol. 64, 155–170 (2004)

    Article  CAS  Google Scholar 

  6. Parlier, M., Ritti, M.H.: State of the art and perspectives for oxide/oxide composites. Aerosp. Sci. Technol. 7, 211–221 (2003)

    Article  CAS  Google Scholar 

  7. Li, L.B.: Damage development and lifetime prediction of fiber-reinforced ceramic-matrix composites subjected to cyclic loading at 1300oC in vacuum, inert and oxidative atmospheres. Aerosp. Sci. Technol. 86, 613–629 (2019)

    Article  Google Scholar 

  8. Li, L.B.: Damage, Fracture and Fatigue of Ceramic-Matrix Composites. Springer Nature, Singapore (2018)

    Book  Google Scholar 

  9. Li, L.: Thermomechanical Fatigue of Ceramic-Matrix Composites. Wiley-VCH, Weinheim (2019)

    Book  Google Scholar 

  10. Recle, E., Godin, N., Reynaud, P., Fantozzi, G.: Fatigue lifetime of ceramic matrix composites at intermediate temperature by acoustic emission. Materials. 10, 658 (2017)

    Article  Google Scholar 

  11. Ruggles-Wrenn, M.B., Christensen, D.T., Chamberlain, A.L., Lane, J.E., Cook, T.S.: Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200oC. Compos. Sci. Technol. 71, 190–196 (2011)

    Article  CAS  Google Scholar 

  12. Dassios, K.G., Aggelis, D.G., Kordatos, E.Z., Matikas, T.E.: Cyclic loading of a SiC-fiber reinforced ceramic matrix composite reveals damage mechanisms and thermal residual stress state. Compos. Part A. 44, 105–113 (2013)

    Article  CAS  Google Scholar 

  13. Rebillat, F.: Advances in self-healing ceramic matrix composites. In: Low, I.M. (ed.) Advances in Ceramic Matrix Composites. Woodhead Publishing, Oxford (2014)

    Google Scholar 

  14. Maire, J.F., Lesne, P.M.: A damage model for ceramic matrix composites. Aerosp. Sci. Technol. 1, 259–266 (1997)

    Article  Google Scholar 

  15. Chaboche, J.L., Maire, J.F.: A new micromechanics based CDM model and its application to CMC’s. Aerosp. Sci. Technol. 6, 131–145 (2002)

    Article  Google Scholar 

  16. Lara-Curzio, E.: Stress rupture of Nicalon/SiC continuous fiber ceramic composites in air at 950oC. J. Am. Ceram. Soc. 80, 3268–3272 (1997)

    Article  CAS  Google Scholar 

  17. Morscher, G.N.: Tensile stress rupture of SiCf/SiCm minicomposites with carbon and boron nitride interphases at elevated temperatures in air. J. Am. Ceram. Soc. 80, 2029–2042 (1997)

    Article  CAS  Google Scholar 

  18. Verrilli, M.J., Opila, E.J., Calomino, A., Kiser, J.D.: Effect of environment on the stress-rupture behavior of a carbon-fiber-reinforced silicon carbide ceramic matrix composites. J. Am. Ceram. Soc. 87, 1536–1542 (2004)

    Article  CAS  Google Scholar 

  19. Li, L.B.: Effect of cyclic fatigue loading on matrix multiple fracture of fiber-reinforced ceramic-matrix composites. Ceramics. 2, 327–346 (2019)

    Article  CAS  Google Scholar 

  20. Lamon, J.: Static fatigue of SiC multifilament tow at temperature up to 1200oC in air. Ceramics. 2, 426–440 (2019)

    Article  CAS  Google Scholar 

  21. Morscher, G.N., Hurst, J., Brewer, D.: Intermediate-temperature stress rupture of a woven Hi-Nicalon, BN-interphase, SiC-matrix composite in air. J. Am. Ceram. Soc. 83, 1441–1449 (2000)

    Article  CAS  Google Scholar 

  22. Li, L.B.: Synergistic effects of temperature, oxidation, loading frequency and stress-rupture on damage evolution of cross-ply ceramic-matrix composites under cyclic fatigue loading at elevated temperatures in oxidizing atmosphere. Eng. Fract. Mech. 175, 15–30 (2017)

    Article  Google Scholar 

  23. Li, L.B.: Synergistic effects of stress-rupture and cyclic loading on strain response of fiber-reinforced ceramic-matrix composites at elevated temperature in oxidizing atmosphere. Materials. 10, 182 (2017)

    Article  Google Scholar 

  24. Li, L.B.: Damage evolution of cross-ply ceramic-matrix composites under stress-rupture and cyclic loading at elevated temperatures in oxidizing atmosphere. Mater. Sci. Eng. A. 688, 315–321 (2017)

    Article  CAS  Google Scholar 

  25. Ikarashi, Y., Ogasawara, T., Aoki, T.: Effects of cyclic tensile loading on the rupture behavior of orthogonal 3-D woven SiC fiber/SiC matrix composites at elevated temperatures in air. J. Eur. Ceram. Soc. 39, 806–812 (2019)

    Article  CAS  Google Scholar 

  26. Halverson, H.G., Curtin, W.A.: Stress rupture in ceramic-matrix composites: theory and experiment. J. Am. Ceram. Soc. 85, 1350–1365 (2002)

    Article  CAS  Google Scholar 

  27. Casas, L., Martinez-Esnaola, J.M.: Modeling the effect of oxidation on the creep behavior of fiber-reinforced ceramic matrix composites. Acta Mater. 51, 3745–3757 (2003)

    Article  CAS  Google Scholar 

  28. Gao, Y.C., Mai, Y., Cotterell, B.: Fracture of fiber-reinforced materials. J. Appl. Math. Phys. 39, 550–572 (1988)

    Google Scholar 

  29. Curtin, W.A.: Theory of mechanical properties of ceramic-matrix composites. J. Am. Ceram. Soc. 74, 2837–2845 (1991)

    Article  CAS  Google Scholar 

  30. Lara-Curzio, E.: Analysis of oxidation-assisted stress-rupture of continuous fiber-reinforced ceramic matrix composites at intermediate temperatures. Compos. Part A. 30, 549–554 (1999)

    Article  Google Scholar 

  31. Liu, Y.: Study on damage failure mechanism of SiC/SiC ceramic matrix composites. Master Thesis, Harbin Institute of Technology, Harbin, China (2019)

  32. Vagaggini, E., Domergue, J.-M., Evans, A.G.: Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I. Theory J. Am. Ceram. Soc. 78, 2709–2720 (1995)

    Article  CAS  Google Scholar 

  33. Chateau, C., Gélébart, L., Bornert, M., Crépin, J., Boller, E., Sauder, C., Ludwig, W.: In situ X-ray microtomography characterization of damage in SiCf/SiC minicomposites. Compos. Sci. Technol. 71, 916–924 (2011)

    Article  CAS  Google Scholar 

  34. Sauder, C., Brusson, A., Lamon, J.: Influence of interface characteristics on the mechanical properties of Hi-nicalon type-S or tyranno-SA3 fiber-reinforced SiC/SiC minicomposites. Int. J. Appl. Ceram. Technol. 7, 291–303 (2010)

    Article  CAS  Google Scholar 

  35. Domergue, J.-M., Vagaggini, E., Evans, A.G.: Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: II, experimental studies on unidirectional materials. J. Am. Ceram. Soc. 78, 2721–2731 (1995)

    Article  CAS  Google Scholar 

  36. Li, L., Song, Y.: Estimate interface shear stress of woven ceramic matrix composites from hysteresis loops. Appl. Compos. Mater. 20, 993–1005 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank the editor and two anonymous reviewers for their helpful comments on an earlier version of the paper.

Funding

The work reported here is supported by the Fundamental Research Funds for the Central Universities (Grant No. NS2019038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longbiao Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L. Stress rupture of fiber-reinforced ceramic-matrix composites subjected to different stochastic loading spectrums at intermediate temperatures. J Aust Ceram Soc 57, 435–458 (2021). https://doi.org/10.1007/s41779-020-00549-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00549-y

Keywords

Navigation