Skip to main content
Log in

Establishing a Correction Factor for Oblique Angle Deposition and Its Verification by the Magneto-Optical Kerr Effect

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Physical vapor deposition (PVD) is one of the major methods for fabricating thin films. Measuring and controlling the thickness of deposited layers are very momentous, especially for optics and photonics applications. Despite regular depositions with substrates situated near the thickness monitor, the oblique angle deposition method requires applying a correction factor for estimating real thicknesses. In this paper, we establish a correction factor formula for different positions of the substrate relative to the deposition source. After numerical simulations, several samples with [Glass/Nickel] and [Glass/Nickel/Zinc Sulfide] structures are fabricated using an oblique angle PVD method. Magneto-optical Kerr measurements and hysteresis loop analysis are obtained from three different points of samples with different thicknesses and compared to the corresponding simulated structures. The results of the correction factor show a high degree of conformity with simulations. Cross-sectional field emission scanning electron microscopic characterization is also used to illustrate the thickness of samples. The thicknesses are then compared to the results obtained from the correction factor, confirming its reliability for practical use in oblique angle deposition methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Moarrefzadeh, A.: Simulation and Modeling of Physical Vapor Deposition (PVD) Process. WSEAS Trans. Appl. Theor. Mech. 7, 106–111 (2012)

  2. Savale, P.A.: Physical vapor deposition (PVD) methods for synthesis of thin films: a comparative study. Arch. Appl. Sci. Res. 8, 1–8 (2016)

    Google Scholar 

  3. Mattox, D.M.: Mattox. V.H, Vacuum coating technology. Springer (2003)

    Google Scholar 

  4. Pawlak, R., Korzeniewska, E., Koneczny, C., Hałgas, B.: Properties of thin metal layers deposited on textile composites by using the PVD method for textronic applications. Autex Res. J. 17, 229–237 (2017)

    Article  Google Scholar 

  5. Li, Z., Li, Q., Quan, X., Zhang, X., Song, C., Yang, H., Wang, X., Gao, J.: Broadband high-reflection dielectric PVD coating with low stress and high adhesion on PMMA. Coatings. 9, 237 (2019). https://doi.org/10.3390/coatings9040243

    Article  Google Scholar 

  6. Uribe, E., Salas, O., Melo-Maximo, D., Oseguera, J., Lepienski, C.M., Torres, R.D., Souza, R.M.: Development of Al oxide PVD coatings against metal dusting. Surf. Eng. 31, 114–122 (2015)

    Article  Google Scholar 

  7. Boulard, B., Peron, O., Chiasera, A., Ferrari, M., Jestin, Y.: Application of PVD technique to the fabrication of erbium doped ZrF4-based glass ceramic for optical amplification. Proc. SPIE 6183, Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, 61831L (2006). https://doi.org/10.1117/12.662631

  8. Gao, Y., Boulard, B., Couchaud, M., Vasilief, I., Guy, S., Duverger, C., Jacquier, B.: Preparation by PVD of Er/Ce-doped PZG fluoride glass channel waveguide for integrated optical amplifiers at 1.5 μm. Opt. Mater. (Amst). 28, 195–199 (2006)

    Article  ADS  Google Scholar 

  9. Chen, J., Ku, T.C., Li, M.F., Chin, A.: Investigation of Schottky junction and MOS technology for 111-V compound semiconductor MOSFET application. 12th International Workshop on Junction Technology, Shanghai, 2012, pp. 127-130 (2012). https://doi.org/10.1109/IWJT.2012.6212826

  10. Gall, S., Barreau, N., Harel, S., Bernède, J.C., Kessler, J.: Material analysis of PVD-grown indium sulphide buffer layers for Cu(In,Ga)Se2-based solar cells. Thin Solid Films. 480–481, 138–141 (2005). https://doi.org/10.1016/j.tsf.2004.11.017

    Article  ADS  Google Scholar 

  11. Barreau, N., Marsillac, S., Bernede, J.C., Ben Nasrallah, T., Belgacem, S.: Optical properties of wide band gap indium sulphide thin films obtained by physical vapor deposition. Phys. Status Solidi. 184, 179–186 (2001)

    Article  ADS  Google Scholar 

  12. Fu, J., Park, B., Siragusa, G., Jones, L., Tripp, R., Zhao, Y., Cho, Y.-J., et al.: Nanotechnology. 19, 155502 (2008). https://doi.org/10.1088/0957-4484/19/15/155502

    Article  ADS  Google Scholar 

  13. Parlak, U., Akoz, M.E., Tokdemir Ozturk, S., Erkovan, M.: Thickness dependent magnetic properties of polycrystalline nickel thin films. Acta Phys. Pol. A. 127, 995–997 (2015)

    Article  ADS  Google Scholar 

  14. Arkwright, J., Underhill, I., Pereira, N., Gros, M., Gross, M.: Deterministic control of thin film thickness in physical vapor deposition systems using a multi-aperture mask. Opt. Express. 13, 2731 (2005). https://doi.org/10.1364/opex.13.002731

    Article  ADS  Google Scholar 

  15. Suh, D., Park, Y., Ryu, H., Sohn, Y.J., Paek, M.C.: Numerical characterization of the magneto-optical polar Kerr effect of a SiOx/FePt/SiOx/Al multilayer on glass substrate. J. Magn. Magn. Mater. 272–276, 2299–2300 (2004). https://doi.org/10.1016/j.jmmm.2003.12.934

    Article  ADS  Google Scholar 

  16. Moradi, M., Ghanaatshoar, M.: Investigation of magneto-optical Kerr signal enhancement in amorphous magnetic ribbons. Eur. Phys. Journal-Applied Phys. 61, 10603-p1–10603-p3 (2013). https://doi.org/10.1051/epjap/2013120295

    Article  Google Scholar 

  17. Zou, Z.Q., Liu, G.Q.: Magneto-optical Kerr effect of amorphous TbFeCoTa film with a quadrilayer structure. Appl. Phys. A Mater. Sci. Process. 78, 711–716 (2004). https://doi.org/10.1007/s00339-002-1984-5

    Article  ADS  Google Scholar 

  18. Ghasemi, A.H.B., Faridi, E., Ansari, N., Mohseni, S.M.: Extraordinary magneto-optical Kerr effect via MoS 2 monolayer in Au/Py/MoS 2 plasmonic cavity. RSC Adv. 6, 106591–106599 (2016). https://doi.org/10.1039/C6RA21314F

    Article  ADS  Google Scholar 

  19. Ghanaatshoar, M., Moradi, M., Tehranchi, M.M., Hamidi, S.M.: Magneto-optical Kerr effect in glass/Cu/CoFeSiB/SnO2 thin films. J. Non-Cryst. Solids. 354, 5266–5268 (2008)

    Article  ADS  Google Scholar 

  20. Si, P., Mortensen, J., Komolov, A., Denborg, J., Moller, P.J.: Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures. Anal. Chim. Acta. 597, 223–230 (2007). https://doi.org/10.1016/j.aca.2007.06.050

    Article  Google Scholar 

  21. Sauerbrey, G.Z.: The use of quarts oscillators for weighing thin layers and for microweighing. Z. Phys. 155, 206–222 (1959)

    Article  ADS  Google Scholar 

  22. Gaur, S.K., Mishra, R.S.: Thermal evaporation- modeling and microstructure studies of indium and tin deposition. Int. J. Adv. Res. Innov. 3, 207–215 (2015)

    Google Scholar 

  23. Esmaeilzadeh, B., Moradi, M., Jahantigh, F.: An investigation of magneto-optical Kerr effect signal by optical cavity in [Glass/Co/ZnS] structure. J. Magn. Magn. Mater. 460, 207–212 (2018). https://doi.org/10.1016/j.jmmm.2018.04.003

    Article  ADS  Google Scholar 

  24. Mahmoodi, S., Moradi, M., Mohseni, S.M.: Optimization of magneto-optical Kerr effect in Cu/Fe/Cu Nano-structure. J. Supercond. Nov. Magn. 29, 1517–1523 (2016). https://doi.org/10.1007/s10948-016-3432-3

    Article  Google Scholar 

  25. Ayareh, Z., Moradi, M., Mahmoodi, S.: Tuning the effective parameters in (Ta/Cu/[Ni/Co]x/Ta) multilayers with perpendicular magnetic anisotropy. Phys. C Supercond. its Appl. 549, 30–32 (2018). https://doi.org/10.1016/j.physc.2018.02.053

    Article  ADS  Google Scholar 

  26. Ghanaatshoar, M., Moradi, M.: Magneto-optical Kerr-effect enhancement in glass/Cu/SnO2/Co/SnO2 thin films. Opt. Eng. 50, 093801 (2011). https://doi.org/10.1117/1.3625419

    Article  ADS  Google Scholar 

  27. Rakic, A.D., Djurisic, A.B., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998)

    Article  ADS  Google Scholar 

  28. Debenham, M.: Refractive indices of zinc sulfide in the 0.405–13-μm wavelength range Mary Debenham. Appl. Opt. 23, 2238 (1984). https://doi.org/10.1364/ao.23.002238

    Article  ADS  Google Scholar 

  29. Moradi, M., Ghanaatshoar, M.: Cavity enhancement of the magneto-optical Kerr effect of a magnetic cobalt nanowires array. Mod. Phys. Lett. B. 30, 1550258 (2016). https://doi.org/10.1142/S0217984915502589

    Article  ADS  Google Scholar 

  30. Kim, N.-H., Cho, J., Jung, J., Han, D.-S., Yin, Y., Kim, J.-S., Swagten, H.J.M., Lee, K., Jung, M.-H., You, C.-Y.: Role of top and bottom interfaces of a Pt/Co/AlOx system in Dzyaloshinskii-Moriya interaction, interface perpendicular magnetic anisotropy, and magneto-optical Kerr effect. AIP Adv. 7, 35213 (2017)

    Article  Google Scholar 

  31. Esmailzadeh, B., Moradi, M.: Enhancement of Kerr signal in Co thin films incorporating Ag nanoparticles surrounded by TiO2. J. Supercond. Nov. Magn. 31, 1483–1488 (2018)

    Article  Google Scholar 

  32. Moradi, M., Mohseni, S.M., Mahmoodi, S., Rezvani, D., Ansari, N., Chung, S., Åkerman, J.: Au/NiFe magnetoplasmonics: large enhancement of magneto-optical Kerr effect for magnetic field sensors and memories. Electron. Mater. Lett. 11, 440–446 (2015). https://doi.org/10.1007/s13391-015-4374-9

    Article  ADS  Google Scholar 

  33. Dyakov, S.A., Spitzer, F., Akimov, I., Yavsin, D.A., Pavlov, S.I., Verbin, S.Y., Tikhodeev, S.G., Gippius, N.A., Pevtsov, A.B., Bayer, M.: Transverse magneto-optical kerr effect in magnetite covered by array of gold nanostripes. semiconductors. 52, 1857–1860 (2018)

    Article  ADS  Google Scholar 

  34. Moradi, M., Ghanaatshoar, M.: Cavity enhancement of the magneto-optic Kerr effect in glass/Al/SnO2/PtMnSb/SnO2 structure. Opt. Commun. 283, 5053–5057 (2010). https://doi.org/10.1016/j.optcom.2010.07.039

    Article  ADS  Google Scholar 

  35. Moradi, M., Alisafaee, H., Ghanaatshoar, M.: The Kerr effect enhancement in non-quarter-wave lossy magnetophotonic crystals. Phys. B Condens. Matter. 405, 4488–4491 (2010). https://doi.org/10.1016/j.physb.2010.08.020

    Article  ADS  Google Scholar 

  36. Mardani, R.: Fabrication of FM/NM/FM hetero-structure multilayers and investigation on structural and magnetic properties: application in GMI magnetic sensors. J. Supercond. Nov. Magn. 33, 503–509 (2020). https://doi.org/10.1007/s10948-019-05215-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Moradi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosaddeghian, M., Moradi, M. Establishing a Correction Factor for Oblique Angle Deposition and Its Verification by the Magneto-Optical Kerr Effect. J Supercond Nov Magn 34, 865–873 (2021). https://doi.org/10.1007/s10948-020-05761-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05761-2

Keywords

Navigation