Skip to main content
Log in

Spintronics and Innovative Memory Devices: a Review on Advances in Magnetoelectric BiFeO3

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Advances in magnetoelectric BiFeO3 open the opportunity to commercialize innovative memory devices. Spin-based technology was employed to fabricate the magnetic random access memory (MRAM). The ferroelectric random access memory (FeRAM) based on ferroelectricity was also realized. Both memories have great properties, but unfortunately with some flaws. A new vision was hypothesized to combine both memories to create unlimited memory device. Combination of MRAM and FeRAM means coupling of ferromagnetic-ferroelectric properties in single material. Studies on magnetoelectric BiFeO3 might hold the future for memory devices with thousands of published papers in last years. In this review, we tried to show a comprehensive picture of the large number of studies on multiferroic BiFeO3 including techniques to enhance the properties and remove obstacles. Here, we begin with an overview of spintronics memory devices and multiferroic materials. An organized classification of studies depended on occupation site in BiFeO3 and type of dopant was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marrows, C.H., Chapon, L.C., Langridge, S.: Spintronics and functional materials. Mater. Today. 12, 70–77 (2009)

    Article  Google Scholar 

  2. Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., Piramanayagam, S.N.: Spintronics based random access memory: a review. Mater. Today. 20, 530–548 (2017)

    Article  Google Scholar 

  3. Misra, P.K.: Electronics. In: Misra, P.K. (ed.) Physics of condensed matter, pp. 305–337. Academic Press (2011). https://doi.org/10.1016/B978-0-12-384954-0.00010-4

  4. Crowe, J., Hayes-Gill, B.: Semiconductor memories. In: Crowe, J., Hayes-Gill, B. (eds.) Introduction to digital electronics, pp. 240–265. Elsevier (1998). https://doi.org/10.1016/B978-034064570-3/50012-5

  5. Chambers, S.A.: A potential role in spintronics. Mater. Today. 5, 34–39 (2002)

    Article  Google Scholar 

  6. Joshi, V.K.: Spintronics: a contemporary review of emerging electronics devices. Eng. Sci. Technol. Int. J. 19, 1503–1513 (2016)

    Google Scholar 

  7. Shen, S.-Q.: Spintronics and spin current. AAPPS Bull. 18, 29–36 (2008)

    Google Scholar 

  8. Johnson, M.: Introduction to magnetoelectronics. In: Johnson, M. (ed.) Magnetoelectronics, pp. 1–65. Elsevier (2004). https://www.sciencedirect.com/science/article/pii/B9780120884872500029

  9. Zhang, Y., Zhao, W., Klein, J.-O., Kang, W., Querlioz, D., Zhang, Y., Ravelosona, D., Chappert, C.: Spintronics for low-power computing. Des. Autom. Test Eur. Conf. Exhib. 1–5 (2014). https://doi.org/10.7873/DATE.2014.316

  10. Thompson, S.E., Parthasarathy, S.: Moore’s law: the future of Si microelectronics. Mater. Today. 9, 20–25 (2006)

    Article  Google Scholar 

  11. Hook, T.B.: Power and technology scaling into the 5 nm node with stacked nanosheets. Joule. 2, 1–4 (2018)

    Article  Google Scholar 

  12. Hiramoto, T.: Five nanometre CMOS technology. Nat. Electronics. 2, 557–558 (2019)

    Article  Google Scholar 

  13. Ding, Y., Cao, Y., Luo, X., Shang, E., Hu, S., Chen, S., Zhao, Y.: A device design for 5 nm Logic FinFET technology. J. Microelectron. Manuf. 3(1), 20030105 (2020)

    Google Scholar 

  14. Liu, W., Wong, P.K.J., Xu, Y.: Hybrid spintronic materials: growth, structure and properties. Prog. Mater. Sci. 99, 27–105 (2019)

    Article  Google Scholar 

  15. Chandrasekar, L.B., Gnanasekar, K., Karunakaran, M.: Spintronics – a mini review. Superlattice. Microst. 136, 106322 (2019)

    Article  Google Scholar 

  16. Sousa, R.C., Prejbeanu, I.L.: Non-volatile magnetic random access memories (MRAM). C. R. Physique. 6, 1013–1021 (2005)

    Article  ADS  Google Scholar 

  17. Duke, C.B., Plummer, E.W.: Frontiers in surface science and interface science, pp. 175–176. Gulf Professional Publishing (2002). https://books.google.com.eg/books?id=pXlYAveDil0C&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

  18. Ryhänen, T., Uusitalo, M.A., Ikkala, O., Kärkkäinen, A.: Nanotechnologies for future mobile devices. Cambridge University Press (2010). https://books.google.com.eg/books?id=wC_f32nH7wsC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

  19. Ivanov, V.A., Ugolkova, E.A., Pashkova, O.N., Sanygin, V.P., Padalko, A.G.: Ferromagnetism in dilute magnetic semiconductors and new materials for spintronics. J. Magn. Magn. Mater. 300, e32–e36 (2006)

    Article  ADS  Google Scholar 

  20. Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.-L., Diény, B., Pirro, P., Hillebrands, B.: Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020)

    Article  Google Scholar 

  21. Cheng, Y., Peng, B., Hu, Z., Zhou, Z., Liu, M.: Recent development and status of magnetoelectric materials and devices. Phys. Lett. A. 382, 3018–3025 (2018)

    Article  ADS  Google Scholar 

  22. Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010)

    Article  ADS  Google Scholar 

  23. Nechache, R., Harnagea, C., Rosei, F.: Multiferroic nanoscale Bi2FeCrO6 material for spintronic-related applications. Nanoscale. 4, 5588–5592 (2012)

    Article  ADS  Google Scholar 

  24. Ishiwara, H.: Ferroelectric random access memories. J. Nanosci. Nanotechnol. 12, 7619–7627 (2012)

    Article  Google Scholar 

  25. Roy, A., Gupta, R., Garg, A.: Multiferroic memories. Adv. Condens. Matter Phys. 2012, 926290 (2012)

    Article  Google Scholar 

  26. Scott, J.F.: Multiferroic memories. Nat. Mater. 6, 256–257 (2007)

    Article  ADS  Google Scholar 

  27. Yang, F., Zhou, Y.C., Tang, M.H., Liu, F., Ma, Y., Zheng, X.J., Zhao, W.F., Xu, H.Y., Sun, Z.H.: Eight-logic memory cell based on multiferroic junctions. J. Phys. D. Appl. Phys. 42, 072004 (2009)

    Article  ADS  Google Scholar 

  28. Spaldin, N.A., Ramesh, R.: Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019)

    Article  Google Scholar 

  29. Spaldin, N.A., Cheong, S.-W., Ramesh, R.: Multiferroics: past, present, and future. Phys. Today. 63, 38–43 (2010)

    Article  Google Scholar 

  30. Tong, W.-Y., Gong, S.-J., Wan, X., Duan, C.-G.: Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun. 7, 13612 (2016)

    Article  ADS  Google Scholar 

  31. Jin, W., Drueke, E., Li, S., Admasu, A., Owen, R., Day, M., Sun, K., Cheong, S.-W., Zhao, L.: Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020)

    Article  Google Scholar 

  32. Lu, C., Wu, M., Lin, L., Liu, J.-M.: Single-phase multiferroics: new materials, phenomena, and physics. Natl. Sci. Rev. 6, 653–668 (2019)

    Article  Google Scholar 

  33. Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics. 162, 317–338 (1994)

    Article  Google Scholar 

  34. Vopson, M.M.: Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015)

    Article  ADS  Google Scholar 

  35. Khomskii, D.: Classifying multiferroics: mechanisms and effects. Physics. 2, 20 (2009)

    Article  Google Scholar 

  36. Khomskii, D.I.: Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006)

    Article  ADS  Google Scholar 

  37. Stojanovic, B.: Magnetic, ferroelectric, and multiferroic metal oxides. In: Korotcenkov, G., Stojanovic, B. (eds.) Magnetic, Ferroelectric, and Multiferroic Metal Oxides, pp. 487−514. Elsevier, Amsterdam (2018). https://doi.org/10.1016/C2016-0-00851-3

  38. Jiang, B., Iocozzia, J., Zhao, L., Zhang, H., Harn, Y.-W., Chen, Y., Lin, Z.: Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 48, 1194–1228 (2019)

    Article  Google Scholar 

  39. Rushchanskii, K.Z., Kamba, S., Goian, V., Vaněk, P., Savinov, M., Prokleška, J., Nuzhnyy, D., Knížek, K., Laufek, F., Eckel, S., Lamoreaux, S.K., Sushkov, A.O., Ležaić, M., Spaldin, N.A.: A multiferroic material to search for the permanent electric dipole moment of the electron. Nat. Mater. 9, 649–654 (2010)

    Article  ADS  Google Scholar 

  40. Lee, J.H., Fang, L., Vlahos, E., Ke, X., Jung, Y.W., Kourkoutis, L.F., Kim, J.-W., Ryan, P.J., Heeg, T., Roeckerath, M., Goian, V., Bernhagen, M., Uecker, R., Hamme, P.C., Rabe, K.M., Kamba, S., Schubert, J., Freeland, J.W., Muller, D.A., Fennie, C.J., Schiffer, P., Gopalan, V., Johnston-Halperin, E., Schlom, D.G.: A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature. 466, 954–958 (2010)

    Article  ADS  Google Scholar 

  41. Sundaresan, A., Rao, C.N.R.: Ferromagnetism as a universal feature of inorganic nanoparticles. Nano Today. 4, 96–106 (2009)

    Article  Google Scholar 

  42. Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 299, 1719–1722 (2003)

    Article  ADS  Google Scholar 

  43. Čebela, M., Zagorac, D., Batalović, K., Radaković, J., Stojadinović, B., Spasojević, V., Hercigonja, R.: BiFeO3 perovskites: a multidisciplinary approach to multiferroics. Ceram. Int. 43, 1256–1264 (2017)

    Article  Google Scholar 

  44. Ortega, N., Kumar, A., Scott, J.F., Katiyar, S.: Multifunctional magnetoelectric materials for device applications. J. Phys. Condens. Matter. 27, 504002 (2015)

    Article  Google Scholar 

  45. Ilić, N.I., Bobić, J.D., Stojadinović, B.S., Dzunuzović, A.S., Petrović, M.M.V., Dohcević-Mitrović, Z.D., Stojanović, B.D.: Improving of the electrical and magnetic properties of BiFeO3 by doping with yttrium. Mater. Res. Bull. 77, 60–69 (2016)

    Article  Google Scholar 

  46. Mishra, A.K.: Smart ceramics: preparation, properties, and applications. Pan Stanford Publishing, Singapore (2018)

  47. Yang, C.-H., Kan, D., Takeuchi, I., Nagarajand, V., Seidel, J.: Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953–15962 (2012)

    Article  Google Scholar 

  48. Puhan, A., Bhushan, B., Kumar, V., Panda, H.S., Rout, D.: Structural and dielectric properties of Ba, Cr co-doped BiFeO3 multiferroic nanoparticles. AIP Conf. Proceed. 1953, 030227 (2018)

    Article  Google Scholar 

  49. Lu, S.-Z., Qi, X.: Magnetic and dielectric properties of nanostructured BiFeO3 prepared by sol–gel method. J. Am. Ceram. Soc. 97, 2185–2194 (2014)

    Article  Google Scholar 

  50. Ravindran, P., Vidya, R., Kjekshus, A., Fjellvåg, H.: Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B. 74, 224412 (2006)

    Article  ADS  Google Scholar 

  51. Neaton, J.B., Ederer, C., Waghmare, U.V., Spaldin, N.A., Rabe, K.M.: First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B. 71, 014113 (2005)

    Article  ADS  Google Scholar 

  52. Shi, X.X., Liu, X.Q., Chen, X.M.: Readdressing of magnetoelectric effect in bulk BiFeO3, dv. Funct. Mater. 27, 1604037 (2017)

    Article  Google Scholar 

  53. Raghavan, C.M., Kim, J.W., Kim, S.S.: Effects of Ho and Ti doping on structural and electrical properties of BiFeO3 thin films. J. Am. Ceram. Soc. 97, 235–240 (2014)

    Article  Google Scholar 

  54. Verma, K.C., Kotnala, R.K.: Tailoring the multiferroic behavior in BiFeO3 nanostructures by Pb doping. RSC Adv. 6, 57727–57738 (2016)

    Article  ADS  Google Scholar 

  55. Kumar, P., Kar, M.: Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J. Alloys Compd. 584, 566–572 (2014)

    Article  Google Scholar 

  56. Silva, J., Reyes, A., Esparza, H., Camacho, H., Fuentes, L.: BiFeO3: a review on synthesis, doping and crystal structure. Integr. Ferroelectr. 126, 47–59 (2011)

    Article  Google Scholar 

  57. Adhlakha, N., Yadav, K.L., Truccato, M., et al.: Ceram. Int. 42, 18238–18246 (2016)

    Article  Google Scholar 

  58. Trivedi, P., Katba, S., Jethva, S., Udeshi, M., Vyas, B., Vagadia, M., Gautam, S., Chae, K.H., Asokan, K., Kuberkar, D.G.: Modifications in the electronic structure of rare-earth doped BiFeO3 multiferroic. Solid State Commun. 222, 5–8 (2015)

    Article  ADS  Google Scholar 

  59. Bhushan, B., Basumallick, A., Bandopadhyay, S.K., Vasanthacharya, N.Y., Das, D.: Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles. J. Phys. D. Appl. Phys. 42, 065004 (2009)

    Article  ADS  Google Scholar 

  60. Banerjee, P., Franco Jr., A.: Rare earth and transition metal doped BiFeO3 ceramics: structural, magnetic and dielectric characterization. J. Mater. Sci. Mater. Electron. 27, 6053–6059 (2016)

    Article  Google Scholar 

  61. Xu, Q., Sobhan, M., Anariba, F., Ho, J.W.C., Chen, Z., Wu, P.: Transition metal-doped BiFeO3 nanofibers: forecasting the conductivity limit. Phys. Chem. Chem. Phys. 16, 23089–23095 (2014)

    Article  Google Scholar 

  62. Bernardo, M.S., Jardiel, T., Peiteado, M., Caballero, A.C., Villegas, M.: Reaction pathways in the solid state synthesis of multiferroic BiFeO3. J. Eur. Ceram. Soc. 31, 3047–3053 (2011)

    Article  Google Scholar 

  63. Zhang, Q., Sando, D., Nagarajan, V.: Chemical route derived bismuth ferrite thin films and nanomaterials. J. Mater. Chem. C. 4, 4092–4124 (2016)

    Article  Google Scholar 

  64. Achenbach, G.D., James, W.J., Gerson, R.: Preparation of single-phase polycrystalline BiFeO3. J. Am. Ceram. Soc. 50, 437 (1967)

    Article  Google Scholar 

  65. Chen, J., Xing, X., Watson, A., Wang, W., Yu, R., Deng, J., Yan, L., Sun, C., Chen, X.: Rapid synthesis of multiferroic BiFeO3 single-crystalline nanostructures. Chem. Mater. 19, 3598–3600 (2007)

    Article  Google Scholar 

  66. Ortiz-Quiñonez, J., Díaz, D., Zumeta-Dubé, I., Arriola-Santamaría, H., Betancourt, I., Santiago-Jacinto, P., Nava-Etzana, N.: Easy synthesis of high-purity BiFeO3 nanoparticles: new insights derived from the structural, optical, and magnetic characterization. Inorg. Chem. 52, 10306–10317 (2013)

    Article  Google Scholar 

  67. Min-Chen, G., Wei-Fang, L., Ping, W., Hong, Z., Xun-Ling, X., Shou-Yu, W., Guang-Hui, R.: Enhanced magnetic and dielectric properties in low-content Tb-doped BiFeO3 nanoparticles. Chin. Phys. Lett. 32, 066101 (2015)

    Article  ADS  Google Scholar 

  68. Dutta, D.P., Mandal, B.P., Naik, R., Lawes, G., Tyagi, A.K.: Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-doped BiFeO3 nanoparticles. J. Phys. Chem. C. 117, 2382–2389 (2013)

    Article  Google Scholar 

  69. Yang, X., Zeng, R.G., Ren, Z.H., Wu, Y.F., Chen, X., Li, M., Chen, J.L., Zhao, R.Y., Zhou, D.K., Lia, Z.M., Tian, H., Lu, Y.H., Li, X., Li, J.X., Han, G.R.: Single-crystal BiFeO3 nanoplates with robust antiferromagnetism. ACS Appl. Mater. Interfaces. 10, 5785–5792 (2018)

    Article  Google Scholar 

  70. Gil-González, E., Perejón, A., Sánchez-Jiménez, P.E., Sayagués, M.J., Raj, R., Perez-Maqueda, L.A.: Phase-pure BiFeO3 produced by reaction flash-sintering of Bi2O3 and Fe2O3. J. Mater. Chem. A. 6, 5356–5366 (2018)

    Article  Google Scholar 

  71. Uniyal, P., Yadav, K.L.: Study of dielectric, magnetic and ferroelectric properties in Bi1 − xGdxFeO3. Mater. Lett. 62, 2858–2861 (2008)

    Article  Google Scholar 

  72. Nalwa, K.S., Garg, A., Upadhyaya, A.: Effect of samarium doping on the properties of solid-state synthesized multiferroic bismuth ferrite. Mater. Lett. 62, 878–881 (2008)

    Article  Google Scholar 

  73. Minh, N.V., Thang, D.V.: Dopant effects on the structural, optical and electromagnetic properties in multiferroic Bi1−xYxFeO3 ceramics. J. Alloys Compd. 505, 619–622 (2010)

    Article  Google Scholar 

  74. Minh, N.V., Quan, N.G.: Structural, optical and electromagnetic properties of Bi1−xHoxFeO3 multiferroic materials. J. Alloys Compd. 509, 2663–2666 (2011)

    Article  Google Scholar 

  75. Selbach, S.M., Tybell, T., Einarsrud, M.-A., Grande, T.: Structure and properties of multiferroic oxygen hyperstoichiometric BiFe1-xMnxO3+δ. Chem. Mater. 21, 5176–5186 (2009)

    Article  Google Scholar 

  76. Bernardo, M.S., Jardiel, T., Peiteado, M., Caballero, A.C., Villegas, M.: Sintering and microstuctural characterization of W6+, Nb5+ and Ti4+ iron-substituted BiFeO3. J. Alloys Compd. 509, 7290–7296 (2011)

    Article  Google Scholar 

  77. Koval, V., Skorvanek, I., Durisin, J., Viola, G., Kovalcikova, A., Svec Jr., P., Saksl, K., Yan, H.: Terbium-induced phase transitions and weak ferromagnetism in multiferroic bismuth ferrite ceramics. J. Mater. Chem. C. 5, 2669–2685 (2017)

    Article  Google Scholar 

  78. Chauhan, S., Kumar, M., Chhoker, S., Katyal, S.C., Singh, M.: Substitution driven structural and magnetic transformation in Ca-doped BiFeO3 nanoparticles. RSC Adv. 6, 43080–43090 (2016)

    Article  ADS  Google Scholar 

  79. Peng-Ting, L., Xiang, L., Li, Z., Jin-Hua, Y., Xing-Wang, C., Zhi-Hong, W., Yu-Chuan, W., Guang-Heng, W.: La-doped BiFeO3: synthesis and multiferroic property study. Chin. Phys. B. 23, 047701 (2014)

    Article  ADS  Google Scholar 

  80. Yu, B., Li, M., Hu, Z., Pei, L., Guo, D., Zhao, X., Dong, S.: Enhanced multiferroic properties of the high-valence Pr doped BiFeO3 thin film. Appl. Phys. Lett. 93, 182909 (2008)

    Article  ADS  Google Scholar 

  81. Liu, J., Li, M., Pei, L., Yu, B., Guo, D., Zhao, X.: Effect of Ce doping on the microstructure and electrical properties of BiFeO3 thin films prepared by chemical solution deposition. J. Phys. D. Appl. Phys. 42, 115409 (2009)

    Article  ADS  Google Scholar 

  82. Li, M., Hu, Z., Pei, L., Liu, J., Wang, J., Yu, B., Zhao, X.: Multiferroic properties of rare-earth Eu and Nd doped BiFeO3 thin films. Ferroelectrics. 410, 3–10 (2011)

    Article  Google Scholar 

  83. Jing, W., Ya, L.M., Lian, L.X., Ling, P., Jun, L., Fang, Y.B., Zhong, Z.X.: Synthesis and ferroelectric properties of Nd doped multiferroic BiFeO3 nanotubes. Chin. Sci. Bull. 55, 1594–1597 (2010)

    Article  Google Scholar 

  84. Meng, C., Guoqiang, T., Xu, X., Ao, X., Huijun, R.: Preparation of Nd-doped BiFeO3 films and their electrical properties. Physica B. 407, 3360–3363 (2012)

    Article  ADS  Google Scholar 

  85. Wang, D., Wang, M., Liu, F., Cui, Y., Zhao, Q., Sun, H., Jin, H., Cao, M.: Sol-gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceram. Int. 41, 8768–8772 (2015)

    Article  Google Scholar 

  86. Zhang, Y., Zhang, Y., Guo, Q., Zhang, D., Zheng, S., Feng, M., Zhong, X., Tan, C., Lu, Z., Wang, J., Hou, P., Zhou, Y., Yuan, J.: Enhanced electromagnon excitations in Nd-doped BiFeO3 nanoparticles near morphotropic phase boundaries. Phys. Chem. Chem. Phys. 21, 21381–21388 (2019)

    Article  Google Scholar 

  87. Singh, S.K.: Structural and electrical properties of Sm-substituted BiFeO3 thin films prepared by chemical solution deposition. Thin Solid Films. 527, 126–132 (2013)

    Article  ADS  Google Scholar 

  88. Hu, Z., Li, M., Liu, J., Pei, L., Wang, J., Yu, B., Zhao, X.: Structural transition and multiferroic properties of Eu-doped BiFeO3 thin films. J. Am. Ceram. Soc. 93, 2743–2747 (2010)

    Article  Google Scholar 

  89. Banerjee, M., Mukherjee, A., Banerjee, A., Das, D., Basu, S.: Enhancement of multiferroic properties and unusual magnetic phase transition in Eu doped bismuth ferrite nanoparticles. New J. Chem. 41, 10985–10991 (2017)

    Article  Google Scholar 

  90. Uniyal, P., Yadav, K.L.: Room temperature multiferroic properties of Eu doped BiFeO3. J. Appl. Phys. 105, 07D914 (2009)

    Article  Google Scholar 

  91. Vashisth, B.K., Bangruwa, J.S., Gairola, S.P., Verma, V.: Structural, dielectric, ferroelectric and magnetic properties of Gd doped BiFeO3. Integr. Ferroelectr. 194, 21–27 (2018)

    Article  Google Scholar 

  92. Lotey, G.S., Verma, N.K.: Magnetoelectric coupling in multiferroic Tb-doped BiFeO3 nanoparticles. Mater. Lett. 111, 55–58 (2013)

    Article  Google Scholar 

  93. Lotey, G.S., Verma, N.K.: Multiferroic properties of Tb-doped BiFeO3 nanowires. J. Nanopart. Res. 15, 1553 (2013)

    Article  ADS  Google Scholar 

  94. Chowdhury, S.S., Kamal, A.H.M., Hossain, R., Hasan, M., Islam, M.F., Ahmmad, B., Basith, M.A.: Dy doped BiFeO3: a bulk ceramic with improved multiferroic properties compared to nano counterparts. Ceram. Int. 43, 9191–9199 (2017)

    Article  Google Scholar 

  95. Chaturvedi, S., Bag, R., Sathe, V., Kulkarni, S., Singh, S.: Holmium induced enhanced functionality at room temperature and structural phase transition at high temperature in bismuth ferrite nanoparticles. J. Mater. Chem. C. 4, 780–792 (2016)

    Article  Google Scholar 

  96. Zhao, J., Liu, S., Zhang, W., Liu, Z., Liu, Z.: Structural and magnetic properties of Er-doped BiFeO3 nanoparticles. J. Nanopart. Res. 15, 1969 (2013)

    Article  ADS  Google Scholar 

  97. Ahn, Y., Seo, J., Son, J.Y., Jang, J.: Enhanced multiferroic properties in epitaxial Yb-doped BiFeO3 thin films. Electron. Mater. Lett. 11, 609–613 (2015)

    Article  ADS  Google Scholar 

  98. Zhang, H., Liu, W., Wu, P., Hai, X., Guo, M., Xi, X., Gao, J., Wang, X., Guo, F., Xu, X., Wang, C., Liu, G., Chue, W., Wang, S.: Novel behaviors of multiferroic properties in Na-doped BiFeO3 nanoparticles. Nanoscale. 6, 10831–10838 (2014)

    Article  ADS  Google Scholar 

  99. Costa, L.V., Deus, R.C., Foschini, C.R., Longo, E., Cilense, M., Simões, A.Z.: Experimental evidence of enhanced ferroelectricity in Ca doped BiFeO3. Mater. Chem. Phys. 144, 476–483 (2014)

    Article  Google Scholar 

  100. Lin, J., Guo, Z., Li, M., Lin, Q., Huang, K., He, Y.: Magnetic and dielectric properties of Ca-substituted BiFeO3 nanoferrites by the sol-gel method. J. Appl. Biomater. Funct. Mater. 16, 93–100 (2018)

    Google Scholar 

  101. El-Desoky, M.M., Mostafa, M.M., Ayoub, M.S., Ahmed, M.A.: Transport properties of Ba-doped BiFeO3 multiferroic nanoparticles. J. Mater. Sci. Mater. Electron. 26, 6793–6800 (2015)

    Article  Google Scholar 

  102. Dhir, G., Uniyal, P., Verma, N.K.: Multiferroic properties of Sr-doped BiFeO3 nanoparticles. Phys. B Condens. Matter. 531, 51–57 (2018)

    Article  ADS  Google Scholar 

  103. Hussain, T., Siddiqi, S.A., Atiq, S., Awan, M.S.: Induced modifications in the properties of Sr doped BiFeO3 multiferroics. Prog. Nat. Sci. Mater. Int. 23, 487–492 (2013)

    Article  Google Scholar 

  104. V. A. Khomchenko, M. Kopcewicz, A. M. L. Lopes, Y. G. Pogorelov, J. P. Araujo, ,J. M. Vieira, A. L. Kholkin, Intrinsic nature of the magnetization enhancement in heterovalently doped Bi1−xAxFeO3 (A = Ca, Sr, Pb, Ba) multiferroics, J. Phys. D. Appl. Phys. 41 (2008) 102003

    Article  ADS  Google Scholar 

  105. Pan, D.-F., Zhou, M.-X., Lu, Z.-X., Zhang, H., Liu, J.-M., Wang, G.-H., Wan, J.-G.: Local magnetoelectric effect in La-doped BiFeO3 multiferroic thin films revealed by magnetic-field-assisted scanning probe microscopy. Nanoscale Res. Lett. 11, 318 (2016)

    Article  ADS  Google Scholar 

  106. Atiq, S., Faizan, M., Khan, A.H., Mahmood, A., Ramay, S.M., Naseem, S.: Co-existence of magnetic and electric ferroic orders in La-substituted BiFeO3. Results Phys. 12, 1269–1275 (2019)

    Article  ADS  Google Scholar 

  107. Cheng, Z.X., Li, A.H., Wang, X.L., Dou, S.X., Ozawa, K., Kimura, H., Zhang, S.J., Shrou, T.R.: Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite. J. Appl. Phys. 103, 07E507 (2008)

    Article  Google Scholar 

  108. Lee, Y.-H., Wu, J.-M., Lai, C.-H.: Influence of La doping in multiferroic properties of BiFeO3 thin films. Appl. Phys. Lett. 88, 042903 (2006)

    Article  ADS  Google Scholar 

  109. Delfard, N.B., Maleki, H., Badizi, A.M., Taraz, M.: Enhanced structural, optical, and multiferroic properties of rod-like bismuth iron oxide nanoceramics by dopant lanthanum. J. Supercond. Nov. Magn. 33, 1207–1214 (2020)

    Article  Google Scholar 

  110. Liu, J., Li, M., Pei, L., Wang, J., Yu, B., Wang, X., Zhao, X.: Structural and multiferroic properties of the Ce-doped BiFeO3 thin films. J. Alloys Compd. 493, 544–548 (2010)

    Article  Google Scholar 

  111. Pradhan, S.K., Roul, B.K.: Electrical behavior of high resistivity Ce-doped BiFeO3 multiferroic. Physica B. 407, 2527–2532 (2012)

    Article  ADS  Google Scholar 

  112. Quan, Z., Liu, W., Hu, H., Xu, S., Sebo, B., Fang, G., Li, M., Zhao, X.: Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films. J. Appl. Phys. 104, 084106 (2008)

    Article  ADS  Google Scholar 

  113. Arti, S., Kumar, P., Kumar, R., Walia, V.: Verma, improved ferroelectric, magnetic and photovoltaic properties of Pr doped multiferroic bismuth ferrites for photovoltaic application. Results Phys. 14, 102403 (2019)

    Article  Google Scholar 

  114. Uniyal, P., Yadav, K.L.: Pr doped bismuth ferrite ceramics with enhanced multiferroic properties. J. Phys. Condens. Matter. 21, 405901 (2009)

    Article  Google Scholar 

  115. Singh, S.K., Tomy, C.V., Era, T., Itoh, M., Ishiwara, H.: Improved multiferroic properties in Sm-doped BiFeO3 thin films deposited using chemical solution deposition method. J. Appl. Phys. 111, 102801 (2012)

    Article  ADS  Google Scholar 

  116. Singh, H.H., Sharma, H.B.: Enhanced electrical and magnetic properties of samarium (Sm) doped multiferroic bismuth ferrite (BFO) ceramics. Integr. Ferroelectr. 203, 120–132 (2019)

    Article  Google Scholar 

  117. Xing, W., Ma, Y., Chen, J., Zhao, S.: Enhanced multiferroic properties of Eu-doped BiFeO3 thin films derived from rhombohedral–tetragonal phase boundary. J. Electron. Mater. 44, 3752–3760 (2015)

    Article  ADS  Google Scholar 

  118. Guo, R., Fang, L., Dong, W., Zheng, F., Shen, M.: Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C. 114, 21390–21396 (2010)

    Article  Google Scholar 

  119. Pradhan, S.K., Roul, B.K.: Effect of Gd doping on structural, electrical and magnetic properties of BiFeO3 electroceramic. J. Phys. Chem. Solids. 72, 1180–1187 (2011)

    Article  ADS  Google Scholar 

  120. Wang, Y., Nan, C.-W.: Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin films. J. Appl. Phys. 103, 024103 (2008)

    Article  ADS  Google Scholar 

  121. Kumar, A., Sharma, P., Varshney, D.: Structural and ferroic properties of La, Nd, and Dy doped BiFeO3 ceramics. J. Ceram. 2015, 869071 (2015)

    Google Scholar 

  122. Xu, J., Ye, G., Zeng, M.: Structure transition and enhanced multiferroic properties of Dy-doped BiFeO3. J. Alloys Compd. 587, 308–312 (2014)

    Article  Google Scholar 

  123. Thansanga, L., Shukla, A., Kumar, N., Choudhary, R.N.P.: Study of effect of Dy substitution on structural, dielectric, impedance and magnetic properties of bismuth ferrite. J. Mater. Sci. Mater. Electron. 31, 10006–10017 (2020)

    Article  Google Scholar 

  124. Suresh, P., Babu, P.D., Srinath, S.: Effect of Ho substitution on structure and magnetic properties of BiFeO3. J. Appl. Phys. 115, 17D905 (2014)

    Article  Google Scholar 

  125. Jeon, N., Rout, D., Kim, I.W., Kang, S.-J.L.: Enhanced multiferroic properties of single-phase BiFeO3 bulk ceramics by Ho doping. Appl. Phys. Lett. 98, 072901 (2011)

    Article  ADS  Google Scholar 

  126. Xing, W., Ma, Y., Ma, Z., Bai, Y., Chen, J., Zhao, S.: Improved ferroelectric and leakage current properties of Er-doped BiFeO3 thin films derived from structural transformation. Smart Mater. Struct. 23, 085030 (2014)

    Article  ADS  Google Scholar 

  127. Li, Y.T., Zhang, H.G., Dong, X.G., Li, Q., Mao, W.W., Dong, C.L., Ren, S.L., Li, X.A., Wei, S.Q.: Structural phase transition and magnetic properties of Er doped BiFeO3 nanoparticles. J. Phys. Conf. Ser. 430, 012108 (2013)

    Article  Google Scholar 

  128. Ahna, Y., Son, J.Y.: Multiferroic properties and ferroelectric domain structures of Yb-doped BiFeO3 thin films on glass substrates. Phys. B Condens. Matter. 558, 24–27 (2019)

    Article  ADS  Google Scholar 

  129. Raghavan, C.M., Do, D., Kim, J.W., Kim, W.-J., Kim, S.S.: Effects of transition metal ion doping on structure and electrical properties of Bi0.9Eu0.1FeO3 thin films. J. Am. Ceram. Soc. 95, 1933–1938 (2012)

    Article  Google Scholar 

  130. Huang, A., Shannigrahi, S.R.: Fatigue-free multiferroic Sc-doped BiFeO3 thin films processed by a chemical solution deposition method. Integr. Ferroelectr. 98, 62–68 (2008)

    Article  Google Scholar 

  131. Kim, S.J., Han, S.H., Kim, H.G., Kim, A.Y., Kim, J.S., Cheon, C.I.: Multiferroic properties of Ti-doped BiFeO3 ceramics. J. Korean Phys. Soc. 56, 439–442 (2010)

    Article  ADS  Google Scholar 

  132. Kim, J.K., Kim, S.S., Kim, W.-J., Bhalla, A.S., Guo, R.: Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 88, 132901 (2006)

    Article  ADS  Google Scholar 

  133. Wang, X.W., Liang, Y.F., Sun, L.Y., Guo, S.Q., Venkatesh, K.S., Wang, X.E., Hou, M.Z., Shang, S.Y., Shang, J., Hu, Y.C., Yin, S.Q.: Effects of Mn doping on ferroelectric, ferromagnetic and optical properties of BiFeO3 thin films. Phys. B Condens. Matter. 594, 412317 (2020)

    Article  Google Scholar 

  134. Liu, W., Tan, G., Dong, G., Yan, X., Ye, W., Ren, H., Xia, A.: Structure transition and multiferroic properties of Mn-doped BiFeO3 thin films. J. Mater. Sci. Mater. Electron. 25, 723–729 (2014)

    Article  Google Scholar 

  135. Zhao, J., Zhang, X., Liu, S., Zhang, W., Liu, Z.: Effect of Ni substitution on the crystal structure and magnetic properties of BiFeO3. J. Alloys Compd. 557, 120–123 (2013)

    Article  Google Scholar 

  136. Yan, F., Lai, M.-O., Lu, L., Zhu, T.-J.: Enhanced multiferroic properties and valence effect of Ru-doped BiFeO3 thin films. J. Phys. Chem. C. 114, 6994–6998 (2010)

    Article  Google Scholar 

  137. Wang, Y., Nan, C.-W.: Structural and ferroic properties of Zr-doped BiFeO3 thin films. Ferroelectrics. 357, 172–178 (2007)

    Article  Google Scholar 

  138. Jun, Y.-K., Moon, W.-T., Chang, C.-M., Kim, H.-S., Ryu, H.S., Kim, J.W., Kim, K.H., Hong, S.-H.: Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics. Solid State Commun. 135, 133–137 (2005)

    Article  ADS  Google Scholar 

  139. Shirolkar, M.M., Hao, C., Dong, X., Guo, T., Zhang, L., Li, M., Wang, H.: Tunable multiferroic and bistable/complementary resistive switching properties of dilutely Li-doped BiFeO3 nanoparticles: an effect of aliovalent substitution. Nanoscale. 6, 4735–4744 (2014)

    Article  ADS  Google Scholar 

  140. Bernardo, M.S., Jardiel, T., Peiteado, M., Mompean, F.J., Garcia-Hernandez, M., Garcia, M.A., Villegas, M., Caballero, A.C.: Intrinsic compositional inhomogeneities in bulk Ti-doped BiFeO3: microstructure development and multiferroic properties. Chem. Mater. 25, 1533–1541 (2013)

    Article  Google Scholar 

  141. Sinha, A.K., Bhushan, B., Jagannath, R.K.S., Sen, S., Mandal, B.P., Meena, S.S., Bhatt, P., Prajapat, C.L., Priyam, A., Mishra, S.K., Gadkari, S.C.: Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol-gel route. Results Phys. 13, 102299 (2019)

    Article  Google Scholar 

  142. Chauhan, S., Kumar, M., Chhoker, S., Katyal, S.C., Singh, H., Jewariya, M., Yadav, K.L.: Multiferroic, magnetoelectric and optical properties of Mn doped BiFeO3 nanoparticles. Solid State Commun. 152, 525–529 (2012)

    Article  ADS  Google Scholar 

  143. Srinivas, V., Raghavender, A.T., Kumar, K.V.: Structural and magnetic properties of Mn doped BiFeO3 nanomaterials. Physiother. Res. Int. 2016, 4835328 (2016)

    Google Scholar 

  144. Sharma, A.D., Sharma, H.B.: Electrical and magnetic properties of Mn-doped BiFeO3 nanomaterials. Integr. Ferroelectr. 203, 81–90 (2019)

    Article  Google Scholar 

  145. Awasthi, R.R., Asokan, K., Das, B.: Structural, dielectric and magnetic domains properties of Mn-doped BiFeO3 materials. Int. J. Appl. Ceram. Technol. 17, 1410–1421 (2020)

    Article  Google Scholar 

  146. Betancourt-Cantera, L.G., Bolarín-Miró, A.M., Cortés-Escobedo, C.A., Hernández-Cruz, L.E., Sánchez-De Jesús, F.: Structural transitions and multiferroic properties of high Ni-doped BiFeO3. J. Magn. Magn. Mater. 456, 381–389 (2018)

    Article  ADS  Google Scholar 

  147. Chaudhari, Y.A., Mahajan, C.M., Jagtap, P.P., Bendre, S.T.: Structural, magnetic and dielectric properties of nano-crystalline Ni-doped BiFeO3 ceramics formulated by self-propagating high-temperature synthesis. J. Adv. Ceramics. 2, 135–140 (2013)

    Article  Google Scholar 

  148. Nadeem, M., Khan, W., Khan, S., Husain, S., Ansari, A.: Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping. J. Appl. Phys. 124, 164105 (2018)

    Article  ADS  Google Scholar 

  149. Khajonrit, J., Prasoetsopha, N., Sinprachim, T., Kidkhunthod, P., Pinitsoontorn, S., Maensiri, S.: Structure, characterization, and magnetic/electrochemical properties of Ni-doped BiFeO3 nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 015010 (2017)

    Article  ADS  Google Scholar 

  150. Li, Y., Fan, Y., Zhang, H., Teng, X., Dong, X., Liu, H., Ge, X., Li, Q., Chen, W., Li, X., Ge, Z.: Structural, thermal, and magnetic properties of Cu-doped BiFeO3. J. Supercond. Nov. Magn. 27, 1239–1243 (2014)

    Article  Google Scholar 

  151. Agrawal, S., Jawad, A., Ashraf, S.S.Z., Naqvi, A.H.: Structural, optical, dielectric and magnetic properties of Cu doped BiFeO3 nanoparticles synthesized by sol gel method. Mater. Focus. 3, 60–66 (2014)

    Article  Google Scholar 

  152. Sheng, Y., Yuan, X., Xu, Q.: The multiferroic properties of Zn doped BiFeO3 thin films. J. Supercond. Nov. Magn. 26, 2785–2789 (2013)

    Article  Google Scholar 

  153. Yang, S., Zhang, F., Xie, X., Sun, H., Zhang, L., Fan, S.: Enhanced leakage and ferroelectric properties of Zn-doped BiFeO3 thin films grown by sol-gel method. J. Alloys Compd. 734, 243–249 (2018)

    Article  Google Scholar 

  154. Gholam, T., Ablat, A., Mamat, M., Wu, R., Aimidula, A., Bake, M.A., Zheng, L., Wang, J., Qian, H., Wu, R., Ibrahim, K.: Local electronic structure analysis of Zn-doped BiFeO3 powders by X-ray absorption fine structure spectroscopy. J. Alloys Compd. 710, 843–849 (2017)

    Article  Google Scholar 

  155. Luo, L., Wei, W., Yuan, X., Shen, K., Xu, M., Xu, Q.: Multiferroic properties of Y-doped BiFeO3. J. Alloys Compd. 540, 36–38 (2012)

    Article  Google Scholar 

  156. Jena, A.K., Satapathy, S., Mohanty, J.: Magnetic properties and oxygen migration induced resistive switching effect in Y substituted multiferroic bismuth ferrite. Phys. Chem. Chem. Phys. 21, 15854–15860 (2019)

    Article  Google Scholar 

  157. Azab, A.A., Solyman, S., El-Dek, S.I.: Correlation between morphology and magnetic properties in Zr doped BiFeO3 nanoparticles. J. Mater. Sci. Mater. Electron. 30, 3004–3012 (2019)

    Article  Google Scholar 

  158. Bernardo, M.S., Jardiel, T., Peiteado, M., Caballero, A.C.: Metastable nature of donor-doped BiFeO3 obtained by mechanochemical synthesis. J. Ceram. Soc. Jpn. 124, 92–97 (2016)

    Article  Google Scholar 

  159. Xu, J.-H., Ke, H., Jia, D.-C., Wang, W., Zhou, Y.: Microwave-dielectric and magnetic properties of Ta-doped BiFeO3 nanopowders. Philos. Mag. Lett. 89, 701–710 (2009)

    Article  ADS  Google Scholar 

  160. Rizwan, S., Umar, M., Babar, Z.U.D., Awan, S.U., Rehman, M.A.: Selenium-enriched flower-like of bismuth ferrite nanosheets assembly with associated magnetic properties. AIP Adv. 9, 055025 (2019)

    Article  ADS  Google Scholar 

  161. Lu, Y.-W., Qi, X.: Hydrothermal synthesis of pure and Sb-doped BiFeO3 with the typical hysteresis loops of ideal ferroelectrics. J. Alloys Compd. 774, 386–395 (2019)

    Article  Google Scholar 

  162. Yang, R., Lin, S., Fang, X., Gao, X., Zeng, M., Liu, J.: First-principles study on the magnetic properties in Mg doped BiFeO3 with and without oxygen vacancies. J. Appl. Phys. 114, 233912 (2013)

    Article  ADS  Google Scholar 

  163. Gholam, T., Ablat, A., Mamat, M., Wu, R., Aimidula, A., AliBake, M., Zheng, L., Wang, J., Qian, H., Wu, R., Ibrahim, K.: An experimental study of the local electronic structure of B-site gallium doped bismuth ferrite powders. Phys. Lett. A. 381, 2367–2373 (2017)

    Article  ADS  Google Scholar 

  164. Mao, W., Wang, X., Han, Y., Li, X., Li, Y., Wang, Y., Ma, Y., Feng, X., Yang, T., Yang, J., Huang, W.: Effect of Ln (Ln = La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles. J. Alloys Compd. 584, 520–523 (2014)

    Article  Google Scholar 

  165. Zheng, X., Xu, Q., Wen, Z., Lang, X., Wu, D., Qiu, T., Xu, M.X.: The magnetic properties of La doped and codoped BiFeO3. J. Alloys Compd. 499, 108–112 (2010)

    Article  Google Scholar 

  166. Yang, K.-G., Yang, S.-H., Zhang, Y.-L.: Ferroelectric properties in multiferroic BiFeO3 thin films codoped with La and Co. Ferroelectrics. 410, 63–68 (2011)

    Article  Google Scholar 

  167. Nadeem, M., Khan, W., Khan, S., Husain, S., Singh, F., Ansari, A., Shukla, D.K., Ahad, A., Chakradhary, V.K., Akhtar, M.J.: Structural, optical and enhanced multiferroic properties of La/Cr cosubstituted BiFeO3 nanostructures. J. Mater. Sci. Mater. Electron. 31, 11177–11194 (2020)

    Article  Google Scholar 

  168. Wu, J., Wang, J.: Ferroelectric and impedance behavior of La- and Ti-codoped BiFeO3 thin films. J. Am. Ceram. Soc. 93, 2795–2803 (2010)

    Article  Google Scholar 

  169. Ruan, J.-H., Yao, B.-M., Tang, P., Deng, Z.-L., Yang, S.-H., Zhang, Y.-L.: The electrical and enhanced magnetic properties of (Ce, Co) doped BiFeO3 particles synthesized via sol-gel method. Ferroelectrics. 489, 73–80 (2015)

    Article  Google Scholar 

  170. Priyadharsini, P., Pradeep, A., Sathyamoorthy, B., Chandrasekaran, G.: Enhanced multiferroic properties in La and Ce co-doped BiFeO3 nanoparticles. J. Phys. Chem. Solids. 75, 797–802 (2014)

    Article  ADS  Google Scholar 

  171. Sati, P.C., Arora, M., Chauhan, S., Chhoker, S., Kumar, M.: Structural, magnetic, and optical properties of Pr and Zr codoped BiFeO3 multiferroic ceramics. J. Appl. Phys. 112, 094102 (2012)

    Article  ADS  Google Scholar 

  172. Das, R., Khan, G.G., Mandal, K.: Pr and Cr co-doped BiFeO3 nanotubes: an advance multiferroic oxide material. EPJ Web. Conf. 40, 15015 (2013)

    Article  Google Scholar 

  173. Shu, H., Wang, Z., Mao, W., Ma, Y., Chu, L., Wang, X., Chen, W., Zhang, J., Yang, J., Song, R., Li, X.: Enhanced multiferroic properties of (Nd, Cr) co-doped BiFeO3 nanoparticles. Appl. Phys. A123, 338 (2017)

    Article  ADS  Google Scholar 

  174. Raghavan, C.M., Kim, J.W., Kim, S.S., Song, T.K.: Structural, electrical, and multiferroic properties of (Nd, Zn) co-doped BiFeO3 thin films prepared by a chemical solution deposition method. Appl. Phys. A Mater. Sci. Process. 119, 667–672 (2015)

    Article  ADS  Google Scholar 

  175. Wang, T., Wang, X.-L., Song, S.-H., Ma, Q.: Effect of rare-earth Nd/Sm doping on the structural and multiferroic properties of BiFeO3 ceramics prepared by spark plasma sintering. Ceram. Int. 46, 15228–15235 (2020)

    Article  Google Scholar 

  176. Wang, C.A., Pang, H.Z., Zhang, A.H., Qin, M.H., Lu, X.B., Gao, X.S., Zeng, M., Liu, J.-M.: Room temperature multiferroic and magnetodielectric properties in Sm and Sc co-doped BiFeO3 ceramics. J. Phys. D. Appl. Phys. 48, 395302 (2015)

    Article  Google Scholar 

  177. Yao, Q., Xu, X., Peng, S., Zhu, Y., Wang, Z., Ma, Y., Wang, X., Mao, W., Li, X.: Structural, optical and multiferroic properties of Eu, Ba co-doped BiFeO3. J. Mater. Sci. Mater. Electron. 28, 463–467 (2017)

    Article  Google Scholar 

  178. Mao, W., Chen, W., Wang, X., Zhu, Y., Ma, Y., Xu, H., Chu, L., Yang, J., Li, X., Huang, W.: Influence of Eu and Sr co-substitution on multiferroic properties of BiFeO3. Ceram. Int. 42, 12838–12842 (2016)

    Article  Google Scholar 

  179. Basith, M.A., Billah, A., Jalil, M.A., Yesmin, N., Sakib, M.A., Ashik, E.K., Yousuf, S.M.E.H., Chowdhury, S.S., Hossain, M.S., Firoz, S.H., Ahmmad, B.: The 10% Gd and Ti co-doped BiFeO3: a promising multiferroic material. J. Alloys Compd. 694, 792–799 (2017)

    Article  Google Scholar 

  180. Das, R., Sarkar, T., Mandal, K.: Multiferroic properties of Ba2+ and Gd3+ co-doped bismuth ferrite: magnetic, ferroelectric and impedance spectroscopic analysis. J. Phys. D. Appl. Phys. 45, 455002 (2012)

    Article  Google Scholar 

  181. Oanh, L.T.M., Thang, D.V., Bich, D.D., Chung, P.D., Hung, N.M., Quang, N.V., Minh, N.V.: Enhancement of ferroelectric and ferromagnetic properties of gadolinium (Gd) and nickel (Ni) co-doped BiFeO3. Ceram. Int. 46, 17423–17429 (2020)

    Article  Google Scholar 

  182. Mao, W., Wang, X., Chu, L., Zhu, Y., Wang, Q., Zhang, J., Yang, J., Li, X., Huang, W.: Simultaneous enhancement of magnetic and ferroelectric properties in Dy and Cr co-doped BiFeO3 nanoparticles. Phys. Chem. Chem. Phys. 18, 6399–6405 (2016)

    Article  Google Scholar 

  183. Ye, W., Tann, G., Dong, G., Ren, H., Xia, A.: Improved multiferroic properties in (Ho, Mn) co-doped BiFeO3 thin films prepared by chemical solution deposition. Ceram. Int. 41, 4668–4674 (2015)

    Article  Google Scholar 

  184. Dutta, D.P., Mandal, B.P., Mukadam, M.D., Yusuf, S.M., Tyagi, A.K.: Improved magnetic and ferroelectric properties of Sc and Ti codoped multiferroic nano BiFeO3 prepared via sonochemical synthesis. Dalton Trans. 43, 7838–7846 (2014)

    Article  Google Scholar 

  185. Le, T.H., Hao, N.V., Thoan, N.H., Hong, N.T.M., Hai, P.V., Thang, N.V., Thang, P.D., Nam, L.V., Tho, P.T., Dang, N.V., Nguyen, X.C.: Origin of enhanced magnetization in (La, Co) codoped BiFeO3 at the morphotropic phase boundary. Ceram. Int. 45, 18480–18486 (2019)

    Article  Google Scholar 

  186. Zhang, L., Yu, J.: Robust insulating La and Ti co-doped BiFeO3 multiferroic ceramics. J. Mater. Sci. Mater. Electron. 27, 8725–8733 (2016)

    Article  Google Scholar 

  187. Kumar, P., Panda, C., Kar, M.: Effect of rhombohedral to orthorhombic transition on magnetic and dielectric properties of La and Ti co-substituted BiFeO3. Smart Mater. Struct. 24, 045028 (2015)

    Article  ADS  Google Scholar 

  188. Tang, Z., Zeng, J., Xiong, Y., Tang, M., Xu, D., Cheng, C., Xiao, Y., Zhou, Y.: Resistive switching properties of Ce and Mn co-doped BiFeO3 thin films for nonvolatile memory application. AIP Adv. 3, 122117 (2013)

    Article  ADS  Google Scholar 

  189. Wu, M., Wang, W., Jiao, X., Wei, G., He, L., Han, S., Liu, Y., Chen, D.: Structural and multiferroic properties of Pr and Ti co-doped BiFeO3 ceramics. Ceram. Int. 42, 14675–14678 (2016)

    Article  Google Scholar 

  190. Lakshmi, S.D., Banu, I.B.S.: Multiferroism and magnetoelectric coupling in single-phase Yb and X (X= Nb, Mn, Mo) co-doped BiFeO3 ceramics. J. Sol-Gel Sci. Technol. 89, 713–721 (2019)

    Article  Google Scholar 

  191. Xu, J., Ye, G., Zeng, M., Deng, Y., Chang, X., Sun, J., Wang, Q.: Enhanced multiferroic properties of Nd and Co co-doped BiFeO3 ceramics. J. Mater. Sci. Mater. Electron. 26, 6907–6912 (2015)

    Article  Google Scholar 

  192. Gumiel, C., Jardiel, T., Bernardo, M.S., Villanueva, P.G., Urdiroz, U., Cebollada, F., Aragó, C., Caballero, A.C., Peiteado, M.: Combination of structural and microstructural effects in the multiferroic response of Nd and Ti co-doped BiFeO3 bulk ceramics. Ceram. Int. 45, 5276–5283 (2019)

    Article  Google Scholar 

  193. Thang, D.V., Hung, N.M., Khang, N.C., Oanh, L.T.M.: Structural and multiferroic properties of (Sm, Mn) co-doped BiFeO3 materials. AIMS Mater. Sci. 7, 160–169 (2020)

    Article  ADS  Google Scholar 

  194. Kumar, K.S., Ramu, S., Sudharani, A., Ramanadha, M., Murali, G., Vijayalakshmi, R.P.: Enhanced magnetic and dielectric properties of Gd doped BiFeO3: Er nanoparticles synthesized by sol-gel technique. Phys. E. 115, 113689 (2020)

    Article  Google Scholar 

  195. Xue, F., Tian, Y., Tang, L., Guo, P., Luo, Z., Li, W.: Rietveld refinement and multiferroic properties of Gd and Ti co-doped BiFeO3. Ferroelectr. Lett. Sect. 45, 30–37 (2018)

    Article  Google Scholar 

  196. Chen, C.C., Liu, Z.X., Wang, G., Yan, Y.L.: Pr and Gd co-doped bismuth ferrite thin films with enhanced multiferroic properties. Bull. Mater. Sci. 37, 1725–1729 (2014)

    Article  Google Scholar 

  197. Sati, P.C., Kumar, M., Chhoker, S.: Phase evolution, magnetic, optical, and dielectric properties of Zr-substituted Bi0.9Gd0.1FeO3 multiferroics. J. Am. Ceram. Soc. 98, 1884–1890 (2015)

    Article  Google Scholar 

  198. Mao, W., Yao, Q., Fan, Y., Wang, Y., Wang, X., Pu, Y., Li, X.: Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping. J. Alloys Compd. 784, 117–124 (2019)

    Article  Google Scholar 

  199. Singh, J., Agarwa, A., Sanghi, S., Bhasin, T., Yadav, M., Bhakar, U., Singh, O.: Effect of Ba and Ho co-doping on crystal structure, phase transformation, magnetic properties and dielectric properties of BiFeO3. Curr. Appl. Phys. 19, 321–331 (2019)

    Article  ADS  Google Scholar 

  200. Yan-Hong, G., Yong, L., Chao, Y., Yan-Wei, M., Yu, W., Lai-Wah, C.H., Wan-Ping, C.: Ho and Ti co-doped BiFeO3 multiferroic ceramics with enhanced magnetization and ultrahigh electrical resistivity. Chin. Phys. B. 23, 037501 (2014)

    Article  ADS  Google Scholar 

  201. Naeimi, A.S., Dehghan, E., Khoshnoud, D.S., Gholizadeh, A.: Enhancement of ferromagnetism in Ba and Er co-doped BiFeO3 nanoparticles. J. Magn. Magn. Mater. 393, 502–507 (2015)

    Article  ADS  Google Scholar 

  202. Ma, Y., Xing, W., Chen, J., Bai, Y., Zhao, S., Zhang, H.: The influence of Er, Ti co-doping on the multiferroic properties of BiFeO3 thin films. Appl. Phys. A Mater. Sci. Process. 122, 63 (2016)

    Article  ADS  Google Scholar 

  203. Hait, S., Ghose, S., Mandal, K.: Effect of Ba and Y co-doping on the structural and magneto-electric properties of BiFeO3 ceramic. J. Alloys Compd. 822, 153614 (2020)

    Article  Google Scholar 

  204. Puhan, A., Bhushan, B., Kumar, V., Panda, H.S., Priyam, A., Das, D., Rout, D.: Tailoring the structural, optical and magnetic properties of BiFeO3 multiferroic nanoparticles by Ba, Cr co-doping. Mater. Sci. Eng. B. 241, 48–54 (2019)

    Article  Google Scholar 

  205. Marzouki, A., Loyau, V., Gemeiner, P., Bessaise, L., Dkhil, B., Megriche, A.: Increase of magnetic and magnetoelectric properties in Co/Mn co-doped BiFeO3 multiferroic. J. Magn. Magn. Mater. 498, 166137 (2020)

    Article  Google Scholar 

  206. Asif, M., Nadeem, M., Imran, M., Ahmad, S., Musaddiq, S., Abbas, W., Gilani, Z.A., Sharif, M.K., Warsi, M.F., Khan, M.A.: Structural, magnetic and dielectric properties of Ni–Co doped BiFeO3 multiferroics synthesized via micro-emulsion route. Phys. B Condens. Matter. 552, 11–18 (2019)

    Article  ADS  Google Scholar 

  207. Pedro-García, F., Betancourt-Cantera, L.G., Bolarín-Miró, A.M., Cortés-Escobedo, C.A., Barba-Pingarrón, A., Sánchez-De Jesús, F.: Magnetoelectric coupling in multiferroic BiFeO3 by co-doping with strontium and nickel. Ceram. Int. 45, 10114–10119 (2019)

    Article  Google Scholar 

  208. Anwar, A., Basith, M.A., Choudhury, S.: From bulk to nano: a comparative investigation of structural, ferroelectric and magnetic properties of Sm and Ti co-doped BiFeO3 multiferroics. Mater. Res. Bull. 111, 93–101 (2019)

    Article  Google Scholar 

  209. Wang, Z., Ma, Y., Zhou, Y., Hu, R., Mao, W., Zhang, J., Min, Y., Yang, J., Li, X., Huan, W.: Multiferroic- and band gap-tuning in BiFeO3 nanoparticles via Zn and Y co-doping. J. Mater. Sci. Mater. Electron. 28, 11338–11345 (2017)

    Article  Google Scholar 

  210. Mukherjee, A., Basu, S., Green, L.A.W., Thanh, N.T.K., Pal, M.: Enhanced multiferroic properties of Y and Mn codoped multiferroic BiFeO3 nanoparticles. J. Mater. Sci. 50, 1891–1900 (2015)

    Article  ADS  Google Scholar 

  211. Banerjee, P., Franco Jr., A.: Influence of Y and Co co-doping in the multiferroic behaviors of BiFeO3 ceramics. J. Mater. Sci. Mater. Electron. 28, 8562–8568 (2017)

    Article  Google Scholar 

  212. Amin, M., Rafique, H.M., Yousaf, M., Ramay, S.M., Atiq, S.: Structural and impedance spectroscopic analysis of Sr/Mn modified BiFeO3 multiferroics. J. Mater. Sci. Mater. Electron. 27, 11003–11011 (2016)

    Article  Google Scholar 

  213. Sharma, N., Kumar, S., Mall, A.K., Gupta, R., Garg, A.: Sr and Mn co-doped sol-gel derived BiFeO3 ceramics with enhanced magnetism and reduced leakage current. Mater. Res. Express. 4, 015702 (2017)

    Article  ADS  Google Scholar 

  214. Wang, T., Song, S.-H., Ma, Q., Tan, M.-L., Chen, J.-J.: Highly improved multiferroic properties of Sm and Nb co-doped BiFeO3 ceramics prepared by spark plasma sintering combined with sol-gel powders. J. Alloys Compd. 795, 60–68 (2019)

    Article  Google Scholar 

  215. Xue, F., Tang, L., Jian, G., Li, W.: Sintering and fatigue properties of Pb and La co-doped BiFeO3 multiferroics. J. Mater. Sci. Mater. Electron. 28, 9344–9350 (2017)

    Article  Google Scholar 

  216. Kumar, N., Shukla, A., Choudhary, R.N.P.: Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci. Mater. Electron. 28, 6673–6684 (2017)

    Article  Google Scholar 

  217. Khomchenko, V.A., Karpinsky, D.V., Bushinsky, M.V., Zhaludkevich, D.V., Franz, A., Silibin, M.V.: Effect of Mn substitution on the crystal and magnetic structure of Bi1-xCaxFeO3-x/2 multiferroics. Mater. Lett. 266, 127470 (2020)

    Article  Google Scholar 

  218. Yuan, X., Shi, L., Zhao, J., Zhou, S., Miao, X., Guo, J.: Tunability of bandgap and magnetism in K and Pb codoped BiFeO3 nanoparticles for multiferroic applications: the role of structural transition and Fe deficiency. ACS Appl. Nano Mater. 2, 1995–2004 (2019)

    Article  Google Scholar 

  219. Khomchenko, V.A., Karpinsky, D.V., Ivanov, M.S., Franz, A., Dubkov, S.V., Silibin, M.V., Paixão, J.A.: Effect of combined Ca/Ti and Ca/Nb substitution on the crystal and magnetic structure of BiFeO3. J. Magn. Magn. Mater. 491, 165561 (2019)

    Article  Google Scholar 

  220. Khomchenko, V.A., Karpinsky, D.V., Zhaludkevich, D.V., Latushka, S.I., Franz, A., Sikolenko, V.V., Nekludov, K.N., Dubkov, S.V., Silibin, M.V., Paixão, J.A.: Temperature-driven structural transformations in Ca/Ti- and Ba/Ti-doped BiFeO3. Mater. Lett. 254, 305–308 (2019)

    Article  Google Scholar 

  221. Khalid, A., Atiq, S., Ramay, S.M., Mahmood, A., Mustafa, G.M., Riaz, S., Naseem, S.: Magneto-electric characteristics in (Mn, Cu) co-doped BiFeO3 multiferroic nanoparticles. J. Mater. Sci. Mater. Electron. 27, 8966–8972 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Mabrouk Yakout.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakout, S.M. Spintronics and Innovative Memory Devices: a Review on Advances in Magnetoelectric BiFeO3. J Supercond Nov Magn 34, 317–338 (2021). https://doi.org/10.1007/s10948-020-05764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05764-z

Keywords

Navigation