Skip to main content
Log in

Synthesis of porous and homogeneous Ni/Al2O3 cryogel for CO2 reforming of CH4

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nickel–alumina cryogel was prepared from aluminium sec-butoxide and nickel acetate by one-pot sol–gel processing and subsequent freeze drying. Catalysis for CO2 reforming of CH4 and carbon formation during the reforming were examined on the cryogel by comparison to those on the corresponding xerogel catalyst prepared by employing normal drying in order to evaluate the utility of the freeze drying. While the catalytic activity was not different significantly between the two sol–gel catalysts, carbon formation was suppressed more markedly on the cryogel than on the xerogel. The surface area and pore volume of the catalyst after the calcination and after the subsequent high-temperature reduction were larger for the cryogel than for the xerogel. XRD, UV-visible, FT-IR, and Raman spectra suggested the principal formation of NiAl2O4 after the calcination for both catalysts, whereas the presence of NiO, leading finally to large nickel particle, was suggested for the xerogel although it may be a small portion. Mean diameter of nickel particles estimated from TEM and XRD showed smaller size for the cryogel than for the xerogel. These results suggested that role of the freeze drying was to improve structural and textual properties of alumina gel as well as to give finer nickel particles throughout the gel.

Highlights

  • Ni/Al2O3 cryogel was synthesized by one-pot sol-gel processing and subsequent freeze drying.

  • Large surface area and pore volume were obtained after calcination and subsequent reduction.

  • Fine nickel particles were formed on alumina after the reduction.

  • Carbon formation during CO2 reforming of CH4 was suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mao XY, Foucher AC, Stach EA, Gorte RJ (2020) J Catal 381:561–569

    Article  CAS  Google Scholar 

  2. Huang JJ, Yan Y, Saqline S, Liu W, Liu B (2020) Appl Catal B-Environ 275:119109

    Article  CAS  Google Scholar 

  3. Moud PH, Andersson KJ, Lanza R, Engvall K (2016) Appl Catal B-Environ 190:137–146

    Article  CAS  Google Scholar 

  4. Fertout RI, Ghelamallah M, Helamallah M, Kacimi, Lopez PN, Corberan VC (2020) Russ J Appl Chem 93:289–298

    Article  CAS  Google Scholar 

  5. Rostrup-Nielsen JR, Sehested J, Norskov JK (2002) Adv Catal 47:65

    CAS  Google Scholar 

  6. Wang YH, Liu HM, Xu BQ (2009) J Mol Catal A-Chem 299:44–52

    Article  CAS  Google Scholar 

  7. Seo JG, Youn MH, Lee HI, Kim JJ, Yang E, Chung JS, Kim P, Song IK (2008) Chem Eng J 141:1–304

    Article  Google Scholar 

  8. Yoo J, Bang Y, Han SJ, Kang TH, Lee J, Song IK (2013) J Mol Catal A-Chem 380:28–33

    Article  CAS  Google Scholar 

  9. Seo JG, Youn MH, Bang Y, Song IK(2010) Int J Hydrogen Energy 35:12174–12181

    Article  CAS  Google Scholar 

  10. Bang Y, Seo JG, Youn MH, Song IK (2012) Int J Hydrog Energy 37:1436–1443

    Article  CAS  Google Scholar 

  11. Gao BY, Wang IW, Ren LL, Haines T, Hu JL (2019) Ind Eng Chem Res 58:798–807

    Article  CAS  Google Scholar 

  12. Klvana D, Chaouki J, Repelinlacroix M, Pajonk GM (1989) J Phys 50:C429

    Google Scholar 

  13. Kirchnerova J, Klvana D, Chaouki J (2000) Appl Catal A-Gen 196:191–198

    Article  CAS  Google Scholar 

  14. Osaki T (2018) J Porous Mater 25:697–711

    Article  CAS  Google Scholar 

  15. Osaki T, Horiuchi T, Sugiyama T, Suzuki K, Mori T (1998) J Non-Cryst Solids 225:111–114

    Article  CAS  Google Scholar 

  16. Li J, Zhang QJ, Zhao YH, Qi P, Shao C (2017) React Kinet Mech Catal 122:1193–1202

    Article  CAS  Google Scholar 

  17. Dekkar S, Tezkratt S, Sellam D, Ikkour K, Parkhomenko K, Martinez-Martin A, Roger AC (2020) Catal Lett 150:2180–2199

    Article  CAS  Google Scholar 

  18. Lee KM, Lee WY (2002) Catal Lett ‏ 83:65–70

    Article  CAS  Google Scholar 

  19. Kim P, Kim Y, Kim H, Song IK, Yi J (2004) Appl Catal A-Gen 272:157–166

    Article  CAS  Google Scholar 

  20. Lopez-Fonseca R, Jimenez-Gonzalez C, de Rivas B, Gutierrez-Ortiz JI (2012) Appl Catal A-Gen 437:53–62

    Article  Google Scholar 

  21. Mizushima Y, HORI M (1994) J Non- Cryst Solids 167:1–8

    Article  CAS  Google Scholar 

  22. Tarte P (1967) Spectrochim Acta A23:2127–2143

    Article  Google Scholar 

  23. Busca G, Lorenzelli V, Escribano VS (1992) Chem Matter 4:595–605

    Article  CAS  Google Scholar 

  24. Chan SS, Wachs IE (1987) J Catal 103:224–227

    Article  CAS  Google Scholar 

  25. Perez-Ramirez J, Mul G, Moulijn JA (2001) Vib Spectrosc 27:75–88

    Article  CAS  Google Scholar 

  26. Wang YG, Xiong G, Liu X, Yu XC, Liu LP, Wang JY, Feng ZC, Li C (2008) J Phys Chem C 112:17265–17271

    Article  CAS  Google Scholar 

  27. Aminzadeh A, Sarikhani-fard H (1999) Spectrochim Acta A-Mole Biomole Spectrosc 55:1421–1425

    Article  Google Scholar 

  28. Yadav SK, Jeevanandam P (2014). J Alloy Compd 610:567–574

    Article  CAS  Google Scholar 

  29. Anderson J. R. (1975) Structure of metallic catalysts. Academic Press, London

  30. The Catalyst Society of Japan (1986) Shokubai Koza, vol. 3. Kodansha, Tokyo

  31. Anjaneyulu C, Kumar V, Vijay B, Suresh K (2013) J Energy Chem 22:853–860

    Article  CAS  Google Scholar 

  32. de Sousa HAS, da Silva AN, Castro AJR, Campos A, Filho JM, Oliveira AC (2012) Int J Hydrog Energy 37:12281–12291

    Article  Google Scholar 

  33. Kim JH, Suh DJ, Park TJ, Kim KL (2000) Appl Catal A-Gen 197:191–200

    Article  CAS  Google Scholar 

  34. Tang S, Ji L, Lin J, Zeng HC, Tan KL, Li K (2000) J Catal 194:424–430

    Article  CAS  Google Scholar 

  35. Bengaard HS, Norskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) J Catal 209:365–384

    Article  CAS  Google Scholar 

  36. Osaki T (2015) Catal Lett 145:1931–1940

    Article  CAS  Google Scholar 

  37. Osaki T, Horiuchi T, Sugiyama T, Suzuki K, Mori T (1988) Catal Lett 52:171–180

    Article  Google Scholar 

  38. Osaki T, Mori T (2009) J Non-Cryst Solids 355:31–1596

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Mrs. Kiho Yamada for assistance in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Osaki.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osaki, T. Synthesis of porous and homogeneous Ni/Al2O3 cryogel for CO2 reforming of CH4. J Sol-Gel Sci Technol 97, 291–301 (2021). https://doi.org/10.1007/s10971-020-05441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05441-6

Keywords

Navigation