Skip to main content
Log in

Mixed Finite Element-Second Order Upwind Fractional Step Difference Scheme of Darcy–Forchheimer Miscible Displacement and Its Numerical Analysis

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The incompressible miscible displacement of three-dimensional Darcy–Forchheimer flow is discussed in this paper, and the mathematical model is formulated by two partial differential equations, a Darcy–Forchheimer flow equation for the pressure and a convection-diffusion equation for the concentration. The pressure plays an important role and determines the Darcy–Forchheimer velocity. A conservative mixed finite element is used to approximate the pressure and the velocity, and the computational accuracy of Darcy–Forchheimer velocity is improved by one order. A second-order upwind fractional step difference scheme is adopted to obtain the concentration, and numerical oscillation and dispersion are eliminated. Computational work is reduced greatly by decomposing the whole computation into successive one-dimensional subcomputations, where the speedup solvers are used. Applying energy-norm method, operator decomposition, speedup algorithm and induction hypotheses, we derive an optimal second-order estimates in \(L^2\) norm. Numerical experiments are given to show the theoretical accuracy and the applicability for solving actual problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers, London (1979)

    Google Scholar 

  2. Ewing, R.E., Lazarov, R.D., Lyons, S.L., Papavassiliou, D.V., Pasciak, J., Qin, G.: Numerical well model for non-darcy flow through isotropic porous media. Comput. Geosci. 3(3–4), 185–204 (1999)

    Article  MathSciNet  Google Scholar 

  3. Ruth, D., Ma, H.: On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Media 7(3), 255–264 (1992)

    Article  Google Scholar 

  4. Douglas Jr., J.: Finite difference methods for two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 20(4), 681–696 (1983)

    Article  MathSciNet  Google Scholar 

  5. Douglas Jr., J.: Simulation of miscible displacement in porous media by a modified method of characteristic procedure. In: Numerical Analysis, Dundee, Lecture Notes in Mathematics, vol 912, pp. 1982. Springer-Verlag, Berlin (1981)

  6. Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47(1–2), 73–92 (1984)

    Article  MathSciNet  Google Scholar 

  7. Douglas Jr., J., Yuan, Y. R.: Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedure. In: Numerical Simulation in Oil Recovery, pp. 119–132. Springer, New York (1986)

  8. Fabrie, P.: Regularity of the solution of Darcy-Forchheimer’s equation. Nonlinear Anal. Theory. Methods Appl. 13(9), 1025–1049 (1989)

    Article  MathSciNet  Google Scholar 

  9. Girault, V., Wheeler, M.F.: Numerical discretization of a Darcy Forchheimer model. Numer. Math. 110(2), 161–198 (2008)

    Article  MathSciNet  Google Scholar 

  10. Lopez, H., Molina, B., Salas, J.J.: Comparison between different numerical discretization for a Darcy-Forchheimer model. Electron. Trans. Numer. Anal. 34, 187–203 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Pan, H., Rui, H.: Mixed element method for two-dimensional Darcy-Forchheimer model. J. Sci. Comput. 52, 563–587 (2012)

    Article  MathSciNet  Google Scholar 

  12. Pan, H., Rui, H.: A mixed element method for Darcy-Forchheimer incompressible miscible displacement problem. Comput. Methods Appl. Mech. Eng. 264, 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  13. H. Rui, H. Pan. A block-centered finite difference method for compressible Darcy Forchheimer model. Submitted for publication

  14. Rui, H., Pan, H.: A block-centered finite difference method for the Darcy-Forchheimer model. SIAM. J Numer. Anal. 50(5), 2612–2631 (2012)

    Article  MathSciNet  Google Scholar 

  15. J. Douglas Jr., P. J. Paes-Leme, T. Giorgi. Generalized Forchheimer flow in porous media. In: Boundary value problems for partial differential equations and applications. In: RMA Research Notes Applied Mathematics, vol. 29, pp. 99–111. Masson, Paris (1993)

  16. Park, J.E.: Mixed finite element method for generalized Forchheimer flow in porous media. Numer. Methods Part. Differ. Equ. 21(2), 213–228 (2005)

    Article  MathSciNet  Google Scholar 

  17. Axelsson, O., Gustafasson, I.: A modified upwind scheme for convective transport equations and the use of a conjugate gradient method for the solution of non-symmetric systems of equations. J. Inst. Math. Appl. 23, 321–337 (1979)

    Article  Google Scholar 

  18. Ewing, R.E., Lazarov, R.D., Vassilev, A.T.: Finite difference scheme for parabolic problems on a composite grids with refinement in time and space. SIAM J. Numer. Anal. 31(6), 1605–1622 (1994)

    Article  MathSciNet  Google Scholar 

  19. Lazarov, R.D., Mischev, I.D., Vassilevski, P.S.: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33(1), 31–55 (1996)

    Article  MathSciNet  Google Scholar 

  20. Ewing, R.E.: The Mathematics of Reservior Simulation. SIAM, Philadelphia (1983)

    Book  Google Scholar 

  21. Peaceman, D.W.: Fundamental of Numerical Reservoir Simulation. Elsevier, Amsterdam (1980)

    Google Scholar 

  22. Yuan, Y.R.: Theory and Application of Reservoir Numerical Simulation, p. 6. Science Press, Beijing (2013)

    Google Scholar 

  23. Douglas Jr., J., Gann, J.E.: Two order correct difference analogues for the equation of multidimensional heat flow. Math. Comp. 17(81), 71–80 (1963)

    Article  MathSciNet  Google Scholar 

  24. Douglas Jr., J., Gunn, J.E.: A general formulation of alternation methods, part I. Parabolic and hyperbolic problems. Numer. Math. 9(5), 428–453 (1964)

    Article  Google Scholar 

  25. Yuan, Y.R.: Time stepping along characteristics for the finite element approximation of compressible miscible displacement in porous media. Math. Numer. Sinica 14(4), 385–400 (1992)

    MATH  Google Scholar 

  26. Yuan, Y.R.: Finite difference methods for a compressible miscible displacement problem in porous media. Math. Numer. Sinica 15(1), 16–28 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yirang Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project supported by the National Natural Science Foundation of China (Grant No. 11271231), Natural Science Foundation of Shandong Province (Grant No. ZR2016AM08)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Li, C. & Yang, Q. Mixed Finite Element-Second Order Upwind Fractional Step Difference Scheme of Darcy–Forchheimer Miscible Displacement and Its Numerical Analysis. J Sci Comput 86, 24 (2021). https://doi.org/10.1007/s10915-020-01393-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01393-9

Keywords

Mathematics Subject Classification

Navigation