Skip to main content

Advertisement

Log in

A Novel Biopolymer Nano-Complex Based on Fish Scale Collagen, Konjac Glucomannan, Camellia Chrysantha Polyphenols and Ginsenoside Rb1: Preparation, Characterization and Its Bioactivity

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A nano-complex containing fish scale collagen, konjac glucomannan, camellia chrysantha polyphenols and ginsenoside Rb1 (GCPR) have been prepared successfully by gelation method. Infrared spectroscopy (IR), scanning field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), ultraviolet–visible spectroscopy (UV–Vis) were used to determine characteristics of obtained GCPR nano-complex. The GCPR nano-complex is in spherical shape with the average particle size is 115.4 nm (95.1%) and 593.0 nm (4.1%). Polyphenols and ginsenoside Rb1 could interact with collagen and konjac glucomannan through hydrogen bonding and dipole–dipole interactions, therefore, the drug release from the GCPR nano-complex in pH 2 buffer solution (simulated gastric fluid in the human body) and pH 7.4 buffer solution (simulated intestinal fluid in the human body) could be controlled. In particular, biological activity of the GCPR nano-complex in inhibition of cancer cells, anti-inflammatory and antioxidant also was investigated. The obtained results show that the GCPR nano-complex exhibits a positive effect on inhibition of cancer cells and anti-inflammatory in comparison with polyphenol or ginsenoside Rb1. Besides, the GCPR nano-complex and polyphenol also exhibit non-toxic to normal cells and antioxidation ability. This nano-complex is promising for application in biomedicine.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández A (2011) Assessment of the evolution of cancer treatment therapies. Cancers 3(3):3279

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baskar R, Kuo Ann L, Richard Y, Kheng-Wei Y (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193

    PubMed  PubMed Central  Google Scholar 

  3. Nicholson LB (2016) The immune system. Essays Biochem 60(3):275

    PubMed  PubMed Central  Google Scholar 

  4. Wang H, Khor TO, Shu L, Su ZY, Fuentes F, Lee JH, Kong AN (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 12(10):1281

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu XQ, Sun Y, Lau E, Zhao M, Su SB (2016) Advances in synergistic combinations of chinese herbal medicine for the treatment of cancer. Curr Cancer Drug Targets 16(4):346

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45(4):287

    CAS  PubMed  Google Scholar 

  7. Fu QY, Li QS, Lin XM, Qiao RY, Yang R, Li XM, Dong ZB, Xiang LP, Zheng XQ, Lu JL, Yuan CB, Ye JH, Liang YR (2017) Antidiabetic effects of tea. Molecules 22(5):1

    Google Scholar 

  8. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43(1):89

    CAS  PubMed  Google Scholar 

  9. Rafieian KM, Movahedi M (2017) Breast cancer chemopreventive and chemotherapeutic effects of Camellia sinensis (green tea): an updated review. Electron Physician 9(2):3838

    Google Scholar 

  10. Jin-Bin W, Li X, Song H, Yong-Hong L, Yu-Zheng P, Jun-Xiang R, Qin X, Yong-Xin C, Cai-Li N, Zhi-Heng S (2015) Characterization and determination of antioxidant components in the leaves of Camellia chrysantha (Hu) Tuyama based on composition activity relationship approach. J Food Drug Anal 23:40

    Google Scholar 

  11. Yi-Fang L, Shu-Hua O, Yi-Qun C, Ting-Mei W, Wei-Xi L, Hai-Yan T, Hong C, Hiroshi K, Rong-Rong H (2017) A comparative analysis of chemical compositions in Camellia sinensis var. puanensis Kurihara, a novel Chinese tea, by HPLC and UFLC-Q-TOF-MS/MS. Food Chem 216:282

    Google Scholar 

  12. Simos YV, Verginadis II, Toliopoulos IK, Velalopoulou AP, Karagounis IV, Karkabounas SC, Evangelou AM (2012) Effects of catechin and epicatechin on superoxide ismutase and glutathione peroxidase activity, in vivo. Redox Rep 17:181

    CAS  PubMed  Google Scholar 

  13. Lixia S, Xiangshe W, Xueqin Z, Dejian H (2011) Polyphenolic antioxidant profiles of yellow camellia. Food Chem 129:351

    Google Scholar 

  14. Jia-Ni L, Hui-Yi L, Ning-Sun Y (2013) Chemical constituents and anticancer activity of yellow camellias against MDA-MB-231 human breast cancer cells. Food Chem 61:9638

    Google Scholar 

  15. Lai W, Debmalya R, Sen LS, Tao YS, Li S (2017) Hypoglycemic effect of Camellia chrysantha extract on type 2 diabetic mice model. Bangladesh J Pharmacol 12:359

    Google Scholar 

  16. Gopal J, Muthu M, Paul D, Doo-Hwan K, Sechul C (2016) Bactericidal activity of greentea extracts: the importance of catechin containing nano particles. Sci Rep 6:19710

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yokozawa T, Nakagawa T, Kitani K (2002) Antioxidative activity of green polyphenol in cholesterol-fed rats. J Agric Food Chem 50(12):3549

    CAS  PubMed  Google Scholar 

  18. Lau AJ, Toh DF, Chua TK, Pang YK, Woo SO, Koh HL (2009) Antiplatelet and anticoagulant effects of Panax notoginseng: comparison of raw and steamed Panax notoginseng with Panax ginseng and Panax quinquefolium. J Ethnopharmacol 125(3):380

    CAS  PubMed  Google Scholar 

  19. Shibata S, Ando T, Tanaka O, Meguro Y, Soma K, Lida Y (1965) Saponins and sapogenins of Panax ginseng C.A. Meyer and some other Panax spp. Yakugaku Zasshi 85:753

    CAS  PubMed  Google Scholar 

  20. Shibata S, Tanaka O, Soma K, Ando T, Lida Y, Nakamura H (1965) Studies on saponins and sapogenins of ginseng. The structure of panaxatriol. Tetrahedron Lett 42:207

    CAS  PubMed  Google Scholar 

  21. Attele AS, Wu JA, Yuan CS (1999) Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58:1685

    CAS  PubMed  Google Scholar 

  22. Lee DC, Lau AS (2011) Effects of Panax ginseng on tumor necrosis factor-α-mediated inflammation: a mini-review. Molecules 16:2802

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ying C (1998) Pharmacodynamical research and clinical application of Panax pseudo-ginseng saponins. Guangxi Med J 20(6):1109

    Google Scholar 

  24. Yuangui Y, Zhengcai J, Yingbo Y, Yanhai Z, Li Y, Zhengtao W (2020) Phytochemical analysis of Panax species: a review. J Ginseng Res (inpress). https://doi.org/10.1016/j.jgr.2019.12.009

    Article  Google Scholar 

  25. FangXu Q, LingFang L, FengChen D (2003) Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol 84(2–3):187

    Google Scholar 

  26. Yuan Q, Jiang YW, Ma TT, Fang QH, Pan L (2014) Attenuating effect of ginsenoside Rb1 on LPS-induced lung injury in rats. J Inflamm (Lond) 11(1):40

    Google Scholar 

  27. Zhou Q, Jiang L, Xu C, Luo D, Zeng C, Liu P, Hu H (2014) Ginsenoside Rg1 inhibits platelet activation and arterial thrombosis. Thromb Res 133(1):57

    CAS  PubMed  Google Scholar 

  28. Guo-Xiang L, Zai-Qun L (2008) The protective effects of ginsenosides on human erythrocytes against hemin-induced hemolysis. Food Chem Toxicol 46:886

    Google Scholar 

  29. Yuan Q, Hui-Ying L, Xiao-Xi G, Yan L, Cheng-Xiao W, Jiang-Hua H, Tian-Rui X, Ye Y, Xiu-Ming C (2018) Converting ginsenosides from stems and leaves of Panax notoginseng by microwave processing and improving their anticoagulant and anticancer activities. RSC Adv 8:40471

    Google Scholar 

  30. Yiying B, Gwang-Jin A, Keunyoung K, Thien N, Sue S, Ok-Nam B, Kyung-Min L, Jin-Ho C (2019) Ginsenoside Rg3, a component of ginseng, induces pro-thrombotic activity of erythrocytes via hemolysis-associated phosphatidylserine exposure. Food Chem Toxicol 131:11055

    Google Scholar 

  31. Orive G, Gascon AR, Hernández RM, Domínguez-Gil A, Pedraz JL (2004) Techniques: new approaches to the delivery of biopharmaceuticals. Trends Pharmacol Sci 25:382

    CAS  PubMed  Google Scholar 

  32. Sadukhan S, Bakshi P, Maiti S (2014) Tailored bio-polymeric nanomicellar carriers: a promising approach for the delivery of poorly water soluble drugs. J Adv Pharm Educ Res 4(1):41

    Google Scholar 

  33. Tanbour R, Martins AM, Pitt WG, Husseini GA (2016) Drug delivery systems based on polymeric micelles and ultrasound: a review. Curr Pharml Des 22(19):2796

    CAS  Google Scholar 

  34. Swamy BY, Prasad CV, Prabhakar MN, Rao KC, Subha MCS, Chung I (2013) Biodegradable chitosan-g-poly(methacrylamide) microspheres for controlled release of hypertensive drug. J Polym Environ 21:1128–1134

    CAS  Google Scholar 

  35. Singh M, O’Hagan D (1998) The preparation and characterization of polymeric antigen delivery systems for oral administration. Adv Drug Deliv Rev 34(2–3):285

    CAS  PubMed  Google Scholar 

  36. Ngwuluka NC, Ochekpe N (2015) Natural polymers: drug delivery. Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor and Francis, New York, pp 5603–5618. https://doi.org/10.1081/E-EBP

    Book  Google Scholar 

  37. Holban AM, Mihai A (2016) Nanoarchitectured polysaccharide-based drug carrier for ocular therapeutics. Nanoarchitecton Smart Deliv Drug Target. https://doi.org/10.1016/C2015-0-06101-9

    Article  Google Scholar 

  38. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O (2020) Therapeutic nanoparticles and their targeted delivery applications. Molecules 25(9):2193

    CAS  PubMed Central  Google Scholar 

  39. Patra JK, Das G, Fraceto LF, Campos E, Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71

    Google Scholar 

  40. Qin Y, Guo XW, Li L, Wang HW, Kim W (2013) The antioxidant property of chitosan green tea polyphenols complex induces trans-glutaminase activation in wound healing. J Med Food 16(6):487

    CAS  PubMed  Google Scholar 

  41. Zhang Y, Xie B, Gan X (2005) Advance in the applications of konjac glucomannan and its derivatives. Carbohydr Polym 60:27

    CAS  Google Scholar 

  42. Doi K (1995) Effect of konjac fibre (glucomannan) on glucose and lipids. Eur J Clin Nutr 3:190

    Google Scholar 

  43. Sood N, Baker WL, Coleman CI (2008) Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: systematic review and meta-analysis. Am J Clin Nutr 88:1167

    CAS  PubMed  Google Scholar 

  44. Fatuma F, Chunlei X, Wei-Yan Q, Hanmei X (2018) Collagen from marine biological sources and medical. Chem Biodivers 15(5):e1700557

    Google Scholar 

  45. Daniela C, Maria O, Giovanni V, Chiara L, Isabella D, Salvatore I, Donatella P (2020) Marine collagen from alternative and sustainable sources: extraction. Process Appl Mar Drugs 18(4):214

    Google Scholar 

  46. Yamamoto K, Igawa K, Sugimoto K, Yoshizawa Y, Yanagiguchi K, Ikeda T, Yamada S, Hayashi Y (2014) Biological safety of fish (tilapia) collagen. BioMed Res Int 2014:630757

    PubMed  PubMed Central  Google Scholar 

  47. Aras O, Kazanci M (2015) Production of collagen micro- and nanofibers for potential drug-carrier systems. J Enzyme Inhib Med Chem 30(6):1013

    CAS  PubMed  Google Scholar 

  48. Zhang R, Wang X, Wang J, Cheng M (2018) Synthesis and characterization of konjac glucomannan/carrageenan/nano-silica films for the preservation of postharvest white mushrooms. Polymers 11(1):6

    PubMed Central  Google Scholar 

  49. Naghshineh N, Tahvildari K, Nozari M (2019) Preparation of chitosan, sodium alginate, gelatin and collagen biodegradable sponge composites and their application in wound healing and curcumin delivery. J Polym Environ 27:2819–2830

    CAS  Google Scholar 

  50. Voicu G, Geanaliu-Nicolae RE, Pîrvan AA, Andronescu E, Iordache F (2016) Synthesis, characterization and bioevaluation of drug-collagen hybrid materials for biomedical applications. Int J Pharm 510:474

    CAS  PubMed  Google Scholar 

  51. Ziemys A, Yokoi K, Kojic M (2015) Capillary collagen as the physical transport barrier in drug delivery to tumor microenvironment. Tissue Barriers 3(3):e1037418

    PubMed  PubMed Central  Google Scholar 

  52. Yang C, Wu H, Wang J (2019) Formulation and evaluation of controlled-release of steroidal saponins-loaded collagen microspheres. Mater Technol 34:1

    Google Scholar 

  53. Petrisor G, Ion RM, Brachais CH, Boni G, Plasseraud L, Couvercelle JP, Chambin O (2012) In Vitro Release of local anaesthetic and anti-inflammatory drugs from crosslinked collagen based device. J Macromol Sci A 49(9):699

    CAS  Google Scholar 

  54. Chinh NT, Manh VQ, Thuy PT, Trung VQ, Quan VA, Ginag BL, Hoang T (2020) Novel pH-sensitive hydrogel beads based on carrageenan and fish scale collagen for allopurinol drug delivery. J Polym Environ 28(6):1795

    Google Scholar 

  55. Lu-Hui W, Guo-Qing H, Tong-Cheng X, Jun-Xia X (2019) Characterization of carboxymethylated konjac glucomannan for potential application in colon-targeted delivery. Food Hydrocoll 94:354

    Google Scholar 

  56. Huiqun Y, Chaoboo X (2008) Synthesis and properties of novel hydrogels from oxidized konjac glucomannan crosslinked gelatin for in vitro drug delivery. Carbohydr Polym 72(3):479

    Google Scholar 

  57. Yi Y, Lin W, Ruo-Jun M, Jingni G, Yuyan W, Yuanzhao L, Jiaqi M, Jie P, Chunhua W (2018) Effects of konjac glucomannan on the structure, properties, and drug release characteristics of agarose hydrogels. Carbohydr Polym 190:196

    Google Scholar 

  58. Chinh NT, Manh VQ, Trung VQ, Lam TD, Huynh MD, Tung NQ, Trinh ND, Hoang T (2019) Characterization of collagen derived from tropical freshwater carp fish scale wastes and its amino acid sequence. Nat Prod Commun 14(7):1–12

    Google Scholar 

  59. Tim M (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Methods 65:55

    Google Scholar 

  60. Dirsch VM, Stuppner H, Vollmar AM (1998) The Griess assay: suitable for a bio-guided fractionation of anti-inflammatory plant extracts? Planta Med 64:423

    CAS  PubMed  Google Scholar 

  61. Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Ulf-Peter H (2007) Determination of DPPH radical oxidation caused by methanolic extracts of some Microalgal species by linear regression analysis of spectrophotometric measurements. Sensors 7:2080

    CAS  PubMed  Google Scholar 

  62. Rezaei A, Nasirpour A (2019) Evaluation of release kinetics and mechanisms of curcumin and curcumin-β-cyclodextrin inclusion complex incorporated in electrospun almond gum/PVA nanofibers in simulated saliva and simulated gastrointestinal conditions. BioNano Sci 9:438

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam Academy of Science and Technology under Grant Number DLTE00.04/20-21, period of 2020–2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thuy Chinh Nguyen or Hoang Thai.

Ethics declarations

Conflict of interests

The Authors declare that there are no competing interests associated with this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, D.Q., Nguyen, T.C., Nguyen, T.D. et al. A Novel Biopolymer Nano-Complex Based on Fish Scale Collagen, Konjac Glucomannan, Camellia Chrysantha Polyphenols and Ginsenoside Rb1: Preparation, Characterization and Its Bioactivity. J Polym Environ 29, 2150–2163 (2021). https://doi.org/10.1007/s10924-020-02022-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02022-0

Keywords

Navigation