Skip to main content

Advertisement

Log in

Changes in organic compounds secreted by roots in two Poaceae species (Hordeum vulgare and Polypogon monspenliensis) subjected to iron deficiency

  • Regular Paper – Physiology/Biochemistry/Molecular and Cellular Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Despite their economic and ecological interests, Poaceae are affected by the low availability of iron in calcareous soils. Several studies focused on the capacity of this family to secrete phytosiderophores and organic acids as a mechanism of tolerance to iron deficiency. This work aimed at studying the physiological responses of two Poaceae species; Hordeum vulgare (cultivated barley) and Polypogon monspenliensis (spontaneous species) to iron deficiency, and evaluate especially the release of phytosiderophores and organic acids. For this purpose, seedlings of these two species were cultivated in complete nutrient solution with or without iron. The biomass production, iron status, phytosiderophores and organic acids release by roots were studied. The results demonstrated that Polypogon monspenliensis was relatively more tolerant to iron deficiency than Hordeum vulgare. Polypogon monspenliensis had the ability to secrete a higher amount of phytosiderophores and organic acids, especially citric, acetic, oxalic and malic acids, compared to Hordeum vulgare. We propose this spontaneous species as a forage plant in calcareous soils and in intercropping systems with fruit trees to prevent iron chlorosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

H.v :

Hordeum vulgare

OA:

Organic acid

P.m :

Polypogon monspenliensis

PS:

Phytosiderophore

References

  • Abadıa J, Lopez-Millan AF, Rombolà A, Abadia A (2002) Organic acids and Fe deficiency: a review. Plant Soil 241:75–86

    Google Scholar 

  • Atia A, Smaoui A, Barhoumi Z, Abdelly C, Debez A (2011) Differential response to salinity and water deficit stress in Polypogon monspeliensis (L.) Desf. provenances during germination. Plant Biol 13:541–545

    CAS  PubMed  Google Scholar 

  • Atia A, Rabhi M, Debez A, Abdelly C, Gouia H, Chaffei HC, Smaoui A (2014) Ecophysiological aspects in 105 plants species of saline and arid environments in Tunisia. J Arid Land 6:762–770

    Google Scholar 

  • Aznar A, Dellagi A (2015) New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J Exp Bot 66:3001–3010

    CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650

    CAS  PubMed  Google Scholar 

  • Beasley JT, Bonneau JP, Johnson AAT (2017) Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to strategy II iron uptake in bread wheat (Triticum aestivum L.). PLoS ONE 12:e0177061

    PubMed  PubMed Central  Google Scholar 

  • Bocchini M, Bartucca ML, Ciancaleoni S, Mimmo T, Cesco S, Pii Y, Albertini E, Del Buono D (2015) Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation. Front Plant Sci 6(514):1–12

    Google Scholar 

  • Bonneau J, Baumann U, Beasley J, Li Y, Johnson AAT (2016) Identification and molecular characterization of the nicotianamine synthase gene family in bread wheat. Plant Biotechnol J 14:2228–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cañasveras JC, Del Campillo MC, Barrón V, Torrent J (2014) Intercropping with grasses helps to reduce iron chlorosis in olive. J Soil Sci Plant Nutr 3:554–564

    Google Scholar 

  • Cesco S, Rombolà AD, Tagliavini M, Varanini Z, Pinton R (2006) Phytosiderophores released by graminaceous species promote Fe-uptake in citrus. Plant Soil 287:223–233

    CAS  Google Scholar 

  • Chen LG, Song Y, Li SJ, Zhang LP, Zou CS, Yu DQ (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819(2):120–128 https://doi.org/10.1016/j.bbagrm.2011.09.002

    CAS  PubMed  Google Scholar 

  • Chen J, Zhang N, Pan Q, Lin XY, Shangguan Z, Zhang JH, Wei GH (2020) Hydrogen sulphide alleviates iron deficiency by promoting iron availability and plant hormone levels in Glycine max seedlings. BMC Plant Biol 20(383):1–22

    CAS  Google Scholar 

  • Covarrubias JI, Rombolà AD (2013) Physiological and biochemical responses of the iron chlorosis tolerant grapevine rootstock 140 Ruggeri to iron deficiency and bicarbonate. Plant Soil 370:305–315

    CAS  Google Scholar 

  • Covarrubias JI, Rombolà AD (2015) Organic acids metabolism in roots of grapevine rootstocks under severe iron deficiency. Plant Soil 394:165–175

    CAS  Google Scholar 

  • Cuenca MRM, Iglesia DJ, Talon M, Abadía J, Lopez-Millan AF, Primo-Millo E, Legaz F (2013) Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck x Poncirus trifoliata (L.) Raf.]. Tree Physiol 33:320–329

    Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    CAS  PubMed  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    CAS  PubMed  Google Scholar 

  • De Nisi P, Vigani G, Zocchi G (2010) Modulation of iron responsive gene expression and enzymatic activities in response to changes of the iron nutritional status in Cucumis sativus L. Nat Preced. https://doi.org/10.1038/npre.2010.4658.1

    Article  Google Scholar 

  • Fan TW, Lane AN, Pedler J, CrowleyD HRM (1997) Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography- mass spectrometry. Anal Biochem 251:57–68

    CAS  PubMed  Google Scholar 

  • Guerinot ML (2001) Improving rice yields-ironing out the details. Nat Biotechnol 19:466–469

    Google Scholar 

  • Harris WR, Sammons RD, Grabiak RC (2012) A speciation model of essential trace metal ions in phloem. J Inorg Biochem 116:140–150

    CAS  PubMed  Google Scholar 

  • Haydon MJ, Kawachi M, Wirtz M, Stefan H, Hell R, Kraïmer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)- deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479

    CAS  PubMed  Google Scholar 

  • Jin CW, Li GX, Yu XH, Zheng SJ (2010) Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann Bot 105:835–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin CW, Ye YQ, Zheng SJ (2014) An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot 113:7–18

    CAS  PubMed  Google Scholar 

  • Jones DL, Darrah PR (1995) Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow. Plant Soil 173:103–109

    CAS  Google Scholar 

  • Jones DL, Darrah PR, Kochian LV (1997) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 189:165–165

    CAS  Google Scholar 

  • Khan MA, Qaiser M (2006) Halophytes of Pakistan: characteristics, distribution and potential economic usages. In: Khan MA, Böer B, Kust GS, Barth HJ (eds) Sabkha ecosystems: West and Central Asia, vol II. Springer, Heidelberg, pp 129–153

    Google Scholar 

  • Kobayashi T, Nakanishi H, Nishizawa NK (2010) Recent insights into iron homeostasis and their application in graminaceous crops. Proc Jpn Acad Ser B Phys Biol Sci 86(9):900–913 https://doi.org/10.2183/pjab.86.900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    CAS  PubMed  Google Scholar 

  • Kumar A, Kaur G, Goel P, Bhati KK, Kaur M, Shukla V, Pandey AK (2018) Genome-wide analysis of oligopeptide transporters and detailed characterization of yellow stripe transporter genes in hexaploid wheat. Funct Integr Genomics 19:75–90

    PubMed  Google Scholar 

  • Kutrowska A, Szelag M (2014) Low-molecular weight organic acids and peptides involved in the long-distance transport of trace metals. Acta Physiol Plant 36:1957–1968

    CAS  Google Scholar 

  • Landsberg E (1982) Transfer cell formation in the root epidermis: a prerequisite for Fe-efficiency? J Plant Nut 5:415–432

    CAS  Google Scholar 

  • Lindsay WL (1995) Chemical reactions in soils that affect iron availability to plants. A quantitative approach. In: Abadia J (ed) Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 7–14

    Google Scholar 

  • Ling N, Raza W, Ma J, Huang Q, Shen Q (2011) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol 47:374–379

    CAS  Google Scholar 

  • Lopez-Rayo S, Di Foggia M, Rodrigues Moreira E, Donnini S, Bombai G, Filippini G, Pisi A, Rombolà AD (2015) Physiological responses in roots of grapevine rootstock 140 Ruggeri subjected to Fe deficiency and Fe-heme nutrition. Plant Physiol Biochem 96:171–179

    CAS  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    CAS  PubMed  Google Scholar 

  • Ma JF, Ueno HD, Rombolà AD, Iwashita T (2003) Characterization of phytosiderophore secretion under Fe deficiency stress in Festuca rubra. Plant Soil 256:131–137

    CAS  Google Scholar 

  • Makmur A, Gerloff CG, Gabelman WH (1978) Physiology and inheritance of efficiency in k+ utilization in tomatoes grown under k+ stress. J Am Hort Sci 103:545–549

    CAS  Google Scholar 

  • Micallef SA, Channer S, Shiaris MP, Colon-Carmona A (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 4:777–780

    PubMed  PubMed Central  Google Scholar 

  • Nagasaka S, Takahashi M, Nakanishi-Itai R, Bashir K, Nakanishi H, Mori S, Nishizawa NK (2009) Time course analysis of gene expression over 24 hours in Fe-deficient barley roots. Plant Mol Biol 69:621–631

    CAS  PubMed  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Nobuyuki Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    CAS  PubMed  Google Scholar 

  • Oburger E, Guy JDK, Walter WW, Markus P, David LJ (2009) Interactive effects of organic acids in the rhizosphere. Soil Biol Biochem 41:449–457

    CAS  Google Scholar 

  • Ogo Y, Nakanishi-Itai R, Inoue H, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2878

    CAS  PubMed  Google Scholar 

  • Pavlovic J, Samardzic J, Maksimović V, Timotijevic G, Stevic N, Laursen KH, Hansen TH, Husted S, Schjoerring JK, Liang Y (2013) Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytol 198:1096–1107

    CAS  PubMed  Google Scholar 

  • Priyanka PS, Preksha S, Giridhar P (2017) PGPR’s mix treatment to Moringa improved plant growth and iron content in foliage as substantiated by biochemical and molecular methods. J Plant Interact 12:526–532

    Google Scholar 

  • Radzki W, Gutierrez Manero FJ, Algar E, Lucas Garcıa JA, Garcia-Villaraco A, Ramos Solano B (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Leeuwenhoek 104:321–330

    CAS  PubMed  Google Scholar 

  • Rellan_Alvarez R, Andaluz S, Rodríguez-Celma J, Wohlgemuth G, Zocchi G, Alvarez-Fernandez A, Fiehn O, Lopez-Millan A, Abdias J (2010) Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply. BMC Plant Biol 10:120–134

    PubMed  PubMed Central  Google Scholar 

  • Robinson N, Procter C, Connolly E, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    CAS  PubMed  Google Scholar 

  • Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14:1787–1799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183:1072–1084

    CAS  PubMed  Google Scholar 

  • Schmidt W (2003) Iron homeostasis in plants: sensing and signaling pathways. J Plant Nutr 26:2211–2230

    CAS  Google Scholar 

  • Slatni T, Vigani G, Ben Salah I, Kouas S, Dell’Orto M, Gouia H, Zocchi G, Abdelly C (2011) Metabolic changes of iron uptake in N2-fixing common bean nodules during iron deficiency. Plant Sci 181:151–158

    CAS  PubMed  Google Scholar 

  • Sun S, Wang J, Zhu L, Liao D, Gu M, Ren L, Kapulnik Y, Xu G (2012) An active factor from tomato root exudates plays an important role in efficient establishment of mycorrhizal symbiosis. PLoS ONE 7:e43385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi S (1993) Production of phytosiderophores. In: Bartonn LL, Hemming BC (eds) Iron chelation in plants and soil micro organisms. Academic Press, New York, pp 111–125

    Google Scholar 

  • Tongyi Y, Genlin L, Yongchun L, Simei Z, Ailan Z, Jinliang Q, Yonghua Y (2012) Rhizosphere microbial communities and organic acids secreted by aluminum-tolerant and aluminum-sensitive soybean in acid soil. Biol Fertil Soils 48:97–108

    Google Scholar 

  • Torrecillas A, Leon A, Del Amor F, Martinez-Mompean MC (1984) Determinación rápida de clorofila en discos foliares de limonero. Fruits 39:617–622

    CAS  Google Scholar 

  • Ueno D, Rombolà AD, Iwashita T, Nomoto K, Ma JF (2007) Identification of two novel phytosiderophores secreted by perennial grasses. New Phytol 174:304–310

    CAS  PubMed  Google Scholar 

  • VonWiren N, Mori S, Marschner H, Romheld V (1994) Iron inefficiency in maize mutant ys1 (Zea mays L. cv Yellow-Stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106:71–77

    CAS  Google Scholar 

  • VonWirén N, Khodr H, Hider RC (2000) Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron (III). Plant Physiol 124:1149–1158

    Google Scholar 

  • Wang M, Kawakami Y, Bhullar NK (2019) Molecular analysis of iron deficiency response in hexaploid Wheat. Front Sustain Food Syst 3:67

    Google Scholar 

  • Wei W, Sun R, Wei Z, Zhao H, Li H, Hu F (2008) Elimination of the interference from nitrate ions on oxalic acid in RP-HPLC by solid-phase extraction with nanosized hydroxyapatite. J Liq Chromatogr Relat Technol 32:106–124

    Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yousfi S, Rabhi M, Abdelly C, Gharsalli M (2009) Iron deficiency tolerance traits in wild (Hordeum maritimum) and cultivated barley (Hordeum vulgare). C R Biol 332:523–533

    CAS  PubMed  Google Scholar 

  • Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700

    CAS  Google Scholar 

  • Zhang H, Li Y, Pu M, Xu P, Liang G, Yu D (2020) Oryza sativa positive regulator of iron deficiency response 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis. Plant Cell Environ 43:261–274

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Tunisian Ministry of Higher Education, Scientific Research (LR10CBBC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Slatni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 149 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakib, D., Slatni, T., Di Foggia, M. et al. Changes in organic compounds secreted by roots in two Poaceae species (Hordeum vulgare and Polypogon monspenliensis) subjected to iron deficiency. J Plant Res 134, 151–163 (2021). https://doi.org/10.1007/s10265-020-01237-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01237-5

Keywords

Navigation