Skip to main content
Log in

Traveling Wave Solutions for a Class of Discrete Diffusive SIR Epidemic Model

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper is concerned with the conditions of existence and nonexistence of traveling wave solutions (TWS) for a class of discrete diffusive epidemic model. We find that the existence of TWS is determined by the so-called basic reproduction number and the critical wave speed: When the basic reproduction number \(\mathfrak {R}_0>1\), there exists a critical wave speed \(c^*>0\), such that for each \(c \ge c^*\) the system admits a nontrivial TWS and for \(c<c^*\) there exists no nontrivial TWS for the system. In addition, the boundary asymptotic behavior of TWS is obtained by constructing a suitable Lyapunov functional and employing Lebesgue dominated convergence theorem. Finally, we apply our results to two discrete diffusive epidemic models to verify the existence and nonexistence of TWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.M., May, R.M.: Infectious Diseases in Humans: Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  • Bai, Z., Zhang, S.: Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay. Commun. Nonlinear Sci. Numer. Simulat. 22, 1370–1381 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Bates, P.W., Chmaj, A.: A discrete convolution model for phase transitions. Arch. Ration. Mech. Anal. 150, 281–305 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Briggs, C.J., Godfray, H.C.J.: The dynamics of insect-pathogen interactions in stage-structured populations. Am. Nat. 145, 855–887 (1995)

    Article  Google Scholar 

  • Brucal-Hallare, M., Vleck, E.V.: Traveling wavefronts in an antidiffusion lattice Nagumo model. SIAM J. Appl. Dyn. Syst. 10, 921–959 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Capasso, V., Serio, G.: A generalization of the Kermack-Mackendric deterministic model. Math. Biosci. 42, 43–61 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, K.-C.: Methods in Nonlinear Analysis. Springer Monographs in Mathematics. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Chen, X., Guo, J.-S.: Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326, 123–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y.-Y., Guo, J.-S., Hamel, F.: Traveling waves for a lattice dynamical system arising in a diffusive endemic model. Nonlinearity 30, 2334–2359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Cui, J., Sun, Y., Zhu, H.: The impact of media on the control of infectious diseases. J. Dyn. Differ. Equ. 20, 31–53 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured epidemic model with external supplies. Nonlinearity 24, 2891–2911 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Erneux, T., Nicolis, G.: Propagating waves in discrete bistable reaction diffusion systems. Physica D 67, 237–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Fang, J., Wei, J., Zhao, X.-Q.: Spreading speeds and travelling waves for non-monotone time-delayed lattice equations. Proc. R. Soc. A-Math. Phys. Eng. Sci. 466, 1919–1934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, S.-C., Guo, J.-S., Wu, C.-C.: Traveling wave solutions for a discrete diffusive epidemic model. J. Nonlinear Convex Anal. 17, 1739–1751 (2016)

    MathSciNet  MATH  Google Scholar 

  • Fu, S.-C.: Traveling waves for a diffusive SIR model with delay. J. Math. Anal. Appl. 435, 20–37 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, J.-S., Wu, C.-H.: Traveling wave front for a two-component lattice dynamical system arising in competition models. J. Differ. Equ. 252, 4357–4391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Han, X., Kloeden, P.E.: Lattice dynamical systems in the biological sciences. In: Yin, G., Zhang, Q. (eds.) Modeling, Stochastic Control, Optimization, and Applications. Springer, Cham (2019)

    Google Scholar 

  • He, J., Tsai, J.-C.: Traveling waves in the Kermark–McKendrick epidemic model with latent period. Z. Angew. Math. Phys. 70, 2722 (2019)

    Article  Google Scholar 

  • Heesterbeek, J.A.P., Metz, J.A.J.: The saturating contact rate in marriage and epidemic models. J. Math. Biol. 31, 529–539 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Hosono, Y., Ilyas, B.: Traveling waves for a simple diffusive epidemic model. Math. Models Methods Appl. Sci. 5, 935–966 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Kapral, R.: Discrete models for chemically reacting systems. J. Math. Chem. 6, 113–163 (1991)

    Article  MathSciNet  Google Scholar 

  • Kermack, W., McKendrick, A.: A contribution to mathematical theory of epidemics. Proc. R. Soc. A-Math. Phys. Eng. Sci. 115, 700–721 (1927)

    MATH  Google Scholar 

  • Korobeinikov, A., Maini, P.K.: Nonlinear incidence and stability of infectious disease models. Math. Med. Biol. 22, 113–128 (2005)

    Article  MATH  Google Scholar 

  • Korobeinikov, A.: Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol. 68, 615–626 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lam, K.-Y., Wang, X., Zhang, T.: Traveling waves for a class of diffusive disease-transmission models with network structures. SIAM J. Math. Anal. 50, 5719–5748 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, W.-T., Xu, W.-B., Zhang, L.: Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discret. Contin. Dyn. Syst. 37, 2483–2512 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y., Li, W.-T., Lin, G.: Traveling waves of a delayed diffusive SIR epidemic model. Commun. Pur. Appl. Anal. 14, 1001–1022 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y., Li, W.-T., Yang, F.-Y.: Traveling waves for a nonlocal dispersal SIR model with delay and external supplies. Appl. Math. Comput. 247, 723–740 (2014)

    MathSciNet  MATH  Google Scholar 

  • Liu, W.M., Levin, S.A., Iwasa, X.: Influence of nonlinear incidence rates upon the behaviour of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Muroya, Y., Kuniya, T., Enatsu, Y.: Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discret. Contin. Dyn. Syst. Ser. B 20, 3057–3091 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics, 3rd edn. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  • Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  • San, X.F., Wang, Z.-C.: Traveling waves for a two-group epidemic model with latent period in a patchy environment. J. Math. Anal. Appl. 475, 1502–1531 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Shu, H., Pan, X., Wang, X.-S., Wu, J.: Traveling waves in epidemic models: non-monotone diffusive systems with non-monotone incidence rates. J. Dyn. Differ. Equ. 31, 883–901 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme, H.R.: Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators. J. Differ. Equ. 250, 3772–3801 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Tian, B., Yuan, R.: Traveling waves for a diffusive SEIR epidemic model with standard incidences. Sci. China Math. 60, 813–832 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, W., Ma, W.: Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discret. Contin. Dyn. Syst. Ser. B 23, 3213–3235 (2018)

    MathSciNet  MATH  Google Scholar 

  • Weng, P., Huang, H., Wu, J.: Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction. IMA J. Appl. Math. 68, 409–439 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Widder, D.V.: The Laplace Transform. Princeton Mathematical Series 6. Princeton University Press, Princeton (1941)

    Google Scholar 

  • Wu, C.-C.: Existence of traveling waves with the critical speed for a discrete diffusive epidemic model. J. Differ. Equ. 262, 272–282 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, S., Weng, P., Ruan, S.: Spatial dynamics of a lattice population model with two age classes and maturation delay. Eur. J. Appl. Math. 26, 61–91 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, D., Ruan, S.: Global analysis of an epidemic model with a nonlinear incidence rate. Math. Biosci. 208, 419–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, D., Zhou, Y.: Qualitative analysis of an epidemic model. Can. Appl. Math. Q 14, 469–492 (2006)

    MathSciNet  MATH  Google Scholar 

  • Xu, R., Ma, Z.: Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Anal. Real World Appl. 10, 3175–3189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, Z., Guo, T.: Traveling waves in a diffusive epidemic model with criss-cross mechanism. Math. Meth. Appl. Sci. 42, 2892–2908 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, F.-Y., Li, Y., Li, W.-T., Wang, Z.-C.: Traveling waves in a nonlocal dispersal Kermack–McKendrick epidemic model equation with monostable convolution type nonlinearity. Discret. Contin. Dyn. Syst. Ser. B 18, 1969–1993 (2013)

    MATH  Google Scholar 

  • Yang, Z., Zhang, G.: Stability of non-monotone traveling waves for a discrete diffusion equation with monostable convolution type nonlinearity. Sci. China Math. 61, 1789–1806 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Q., Wu, S.-L.: Wave propagation of a discrete SIR epidemic model with a saturated incidence rate. Int. J. Biomath. 12, 1950029 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, S., Xu, R.: Travelling waves and global attractivity of an SIRS disease model with spatial diffusion and temporary immunity. Appl. Math. Comput. 224, 635–651 (2013)

    MathSciNet  MATH  Google Scholar 

  • Zhang, Y., Li, Y., Zhang, Q., Li, A.: Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules. Physica A 501, 178–187 (2018)

    Article  MathSciNet  Google Scholar 

  • Zhang, S.-P., Yang, Y.-R., Zhou, Y.-H.: Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence. J. Math. Phys. 59, 011513 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, L., Wang, Z.-C., Ruan, S.: Traveling wave solutions in a two-group epidemic model with latent period. Nonlinearity 30, 1287–1325 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, J., Song, L., Wei, J.: Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay. J. Differ. Equ. 268, 4491–4524 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, J., Xu, J., Wei, J., Xu, H.: Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate. Nonlinear Anal. Real World Appl. 41, 204–231 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, J., Yang, Y., Hsu, C.-H.: Traveling waves for a nonlocal dispersal vaccination model with general incidence. Discret. Contin. Dyn. Syst. Ser. B 25, 1469–1495 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous reviewers for their valuable comments and suggestions which led to a significant improvement of this work. R Zhang and S Liu were supported by Natural Science Foundation of China (11871179; 11771374), J. Wang was supported by National Natural Science Foundation of China (nos. 12071115, 11871179), Natural Science Foundation of Heilongjiang Province (nos. LC2018002, LH2019A021) and Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqiang Liu.

Additional information

Communicated by Mary Pugh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, J. & Liu, S. Traveling Wave Solutions for a Class of Discrete Diffusive SIR Epidemic Model. J Nonlinear Sci 31, 10 (2021). https://doi.org/10.1007/s00332-020-09656-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-020-09656-3

Keywords

Mathematics Subject Classification

Navigation