Skip to main content
Log in

Photoelectron Spectroscopy of Coronene Molecules Embedded in Helium Nanodroplets

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present the first measurement of a one-photon extreme-ultraviolet photoelectron spectrum (PES) of molecules embedded in superfluid helium nanodroplets. The PES of coronene is compared to the gas and solid-phase PESs, and to electron spectra of embedded coronene generated by charge transfer and Penning ionization through ionized or excited helium. The resemblance of the He-droplet PES to the one of the solid phase indicates that mostly coronene clusters are photoionized. In contrast, the He-droplet Penning-ionization electron spectrum is nearly structureless, indicating strong perturbation of the ionization process by the He droplet. These results pave the way to extreme ultraviolet photoelectron spectroscopy (UPS) of clusters and molecular complexes embedded in helium nanodroplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Farnik, J.P. Toennies, J. Chem. Phys. 122, 014307 (2005)

    Article  ADS  Google Scholar 

  2. A. Mauracher, O. Echt, A. Ellis, S. Yang, D. Bohme, J. Postler, A. Kaiser, S. Deni, P. Scheier, Phys. Rep. 751, 1 (2018)

    Article  ADS  Google Scholar 

  3. T.K. Henning, S.A. Krasnokutski, Nat. Astron. 3, 568 (2019)

    Article  ADS  Google Scholar 

  4. L.F. Gomez, E. Loginov, A.F. Vilesov, Phys. Rev. Lett. 108, 155302 (2012)

    Article  ADS  Google Scholar 

  5. A. Boatwright, C. Feng, D. Spence, E. Latimer, C. Binns, A.M. Ellis, S. Yang, Faraday Discuss. 162, 113 (2013)

    Article  ADS  Google Scholar 

  6. E. Latimer, D. Spence, C. Feng, A. Boatwright, A.M. Ellis, S. Yang, Nano Lett. 14, 2902 (2014)

    Article  ADS  Google Scholar 

  7. G. Haberfehlner, P. Thaler, D. Knez, A. Volk, F. Hofer, W.E. Ernst, G. Kothleitner, Nat. Commun. 6, 1 (2015)

    Article  Google Scholar 

  8. Q. Wu, C.J. Ridge, S. Zhao, D. Zakharov, J. Cen, X. Tong, E. Connors, D. Su, E.A. Stach, C.M. Lindsay et al., J. Phys. Chem. Lett. 7, 2910 (2016)

    Article  Google Scholar 

  9. C. Callegari, K.K. Lehmann, R. Schmied, G. Scoles, J. Chem. Phys. 115, 10090 (2001)

    Article  ADS  Google Scholar 

  10. J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004)

    Article  Google Scholar 

  11. F. Stienkemeier, K. Lehmann, J. Phys. B 39, R127 (2006)

    Article  ADS  Google Scholar 

  12. M. Mudrich, F. Stienkemeier, Int. Rev. Phys. Chem. 33, 301 (2014)

    Article  Google Scholar 

  13. P. Radcliffe, A. Przystawik, T. Diederich, T. Döppner, J. Tiggesbäumker, K.-H. Meiwes-Broer, Phys. Rev. Lett. 92, 173403 (2004)

    Article  ADS  Google Scholar 

  14. E. Loginov, D. Rossi, M. Drabbels, Phys. Rev. Lett. 95, 163401 (2005)

    Article  ADS  Google Scholar 

  15. E. Loginov, M. Drabbels, J. Phys. Chem. A 111, 7504 (2007)

    Article  Google Scholar 

  16. E. Loginov, A. Braun, M. Drabbels, Phys. Chem. Chem. Phys. 10, 6107 (2008)

    Article  Google Scholar 

  17. L. Fechner, B. Grüner, A. Sieg, C. Callegari, F. Ancilotto, F. Stienkemeier, M. Mudrich, Phys. Chem. Chem. Phys. 14, 3843 (2012)

    Article  Google Scholar 

  18. B. Thaler, S. Ranftl, P. Heim, S. Cesnik, L. Treiber, R. Meyer, A.W. Hauser, W.E. Ernst, M. Koch, Nat. Commun. 9, 1 (2018)

    Article  Google Scholar 

  19. N. Dozmorov, A. Baklanov, J. von Vangerow, F. Stienkemeier, J. Fordyce, M. Mudrich, Phys. Rev. A 98, 043403 (2018)

    Article  ADS  Google Scholar 

  20. L. Kazak, S. Goöde, K.-H. Meiwes-Broer, J. Tiggesbaäumker, J. Phys. Chem. A 123, 5951 (2019)

    Article  Google Scholar 

  21. L.B. Ltaief, M. Shcherbinin, S. Mandal, S. Krishnan, R. Richter, T. Pfeifer, M. Mudrich, J. Phys. B: At. Mol. Opt. Phys. 53, 204001 (2020)

  22. M. Khakoo, J. Ratliff, S. Trajmar, J. Chem. Phys. 93, 8616 (1990)

    Article  ADS  Google Scholar 

  23. C.C. Wang, O. Kornilov, O. Gessner, J.H. Kim, D.S. Peterka, D.M. Neumark, J. Phys. Chem. 112, 9356 (2008)

    Article  Google Scholar 

  24. D. Buchta, S.R. Krishnan, N.B. Brauer, M. Drabbels, P. O’Keeffe, M. Devetta, M. Di Fraia, C. Callegari, R. Richter, M. Coreno et al., J. Chem. Phys. 139, 084301 (2013)

    Article  ADS  Google Scholar 

  25. M. Shcherbinin, A.C. LaForge, M. Hanif, R. Richter, M. Mudrich, J. Phys. Chem. A 122, 1855 (2018)

    Article  Google Scholar 

  26. L. Ben Ltaief, M. Shcherbinin, S. Mandal, S. Krishnan, A. LaForge, R. Richter, S. Turchini, N. Zema, T. Pfeifer, E. Fasshauer et al., J. Phys. Chem. Lett. 10, 6904 (2019)

    Article  Google Scholar 

  27. S. Mandal, R. Gopal, M. Shcherbinin, A. D’Elia, H. Srinivas, R. Richter, M. Coreno, B. Bapat, M. Mudrich, S. Krishnan, V. Sharma, Phys. Chem. Chem. Phys. 22, 10149 (2020)

    Article  Google Scholar 

  28. A. Derossi, F. Lama, M. Piacentini, T. Prosperi, N. Zema, Rev. Sci. Instrum. 66, 1718 (1995)

    Article  ADS  Google Scholar 

  29. D. Buchta, S.R. Krishnan, N.B. Brauer, M. Drabbels, P. O’Keeffe, M. Devetta, M. Di Fraia, C. Callegari, R. Richter, M. Coreno et al., J. Phys. Chem. A 117, 4394 (2013)

    Article  Google Scholar 

  30. M. Lewerenz, B. Schilling, J.P. Toennies, J. Chem. Phys. 102, 8191 (1995)

    Article  ADS  Google Scholar 

  31. B. Dick, Phys. Chem. Chem. Phys. 16, 570 (2014)

    Article  Google Scholar 

  32. https://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, 26.07.2020)

  33. B. Callicoatt, D. Mar, A. Apkarian, K. Janda, J. Chem. Phys. 105, 7872 (1996)

    Article  ADS  Google Scholar 

  34. M. Mudrich, A. LaForge, A. Ciavardini, P. O’Keeffe, C. Callegari, M. Coreno, A. Demidovich, M. Devetta, M. Di Fraia, M. Drabbels et al., Nat. Commun. 11, 1–7 (2020)

  35. T. Kurzthaler, B. Rasul, M. Kuhn, A. Lindinger, P. Scheier, A.M. Ellis, J. Chem. Phys. 145, 064305 (2016)

    Article  ADS  Google Scholar 

  36. M. Goulart, M. Kuhn, B. Rasul, J. Postler, M. Gatchell, H. Zettergren, P. Scheier, O. Echt, Phys. Chem. Chem. Phys. 19, 27968 (2017)

    Article  Google Scholar 

  37. M. Mahmoodi-Darian, S. Raggl, M. Renzler, M. Goulart, S.E. Huber, A. Mauracher, P. Scheier, O. Echt, J. Chem. Phys. 148, 174303 (2018)

    Article  ADS  Google Scholar 

  38. T. Döppner, T. Diederich, S. Göde, A. Przystawik, J. Tiggesbäumker, K.-H. Meiwes-Broer, J. Chem. Phys. 126, 244513 (2007)

    Article  ADS  Google Scholar 

  39. T. Hartman, P. Juranić, K. Collins, B. Reilly, E. Makoutz, N. Appathurai, R. Wehlitz, Phys. Rev. A 87, 063403 (2013)

    Article  ADS  Google Scholar 

  40. S. Deni, B. Sonnweber, J. Mack, L. Scott, P. Scheier, K. Becker, T. Märk, Int. J. Mass Spectrom. 249, 353 (2006)

    Google Scholar 

  41. W.K. Lewis, B.E. Applegate, J. Sztáray, B. Sztáray, T. Baer, R.J. Bemish, R.E. Miller, J. Am. Chem. Soc. 126, 11283 (2004)

    Article  Google Scholar 

  42. M. Joppien, R. Karnbach, T. Möller, Phys. Rev. Lett. 71, 2654 (1993)

    Article  ADS  Google Scholar 

  43. J. Samson, W.C. Stolte, J. Electron. Spectros. Relat. Phenom. 123, 265 (2002)

    Article  Google Scholar 

  44. A. Acocella, M. de Simone, F. Evangelista, M. Coreno, P. Rudolf, F. Zerbetto, Phys. Chem. Chem. Phys. 18, 13604 (2016)

    Article  Google Scholar 

  45. M.S. Deleuze, J. Phys. Chem. A 108, 9244 (2004)

    Article  Google Scholar 

  46. H. Yamakado, Y. Sawada, H. Shinohara, K. Ohno, J. Electron. Spectros. Relat. Phenom. 88, 927 (1998)

    Article  Google Scholar 

  47. D. Buchta, S.R. Krishnan, N.B. Brauer, M. Drabbels, P. O’Keeffe, M. Devetta, M. Di Fraia, C. Callegari, R. Richter, M. Coreno, K.C. Prince, F. Stienkemeier, J. Ullrich, R. Moshammer, M. Mudrich, J. Chem. Phys. 139, 084301 (2013)

    Article  ADS  Google Scholar 

  48. T. Munakata, T. Hirooka, K. Kuchitsu, J. Electron. Spectros. Relat. Phenom. 13, 219 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

M.M. and L.B.L. acknowledge financial support by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, projects MU 2347/10-1 and BE 6788/1-1) and by the Carlsberg Foundation. SRK thanks DST and MHRD, Govt of India, through the IMPRINT programmes, and the Max Planck Society. M.M. and S.R.K. gratefully acknowledge funding from the SPARC Programme, MHRD, India. We thank Monica de Simone and Marcello Coreno for their private communications. The research leading to this result has been supported by the project CALIPSOplus under grant agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Ben Ltaief or M. Mudrich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ltaief, L.B., Shcherbinin, M., Mandal, S. et al. Photoelectron Spectroscopy of Coronene Molecules Embedded in Helium Nanodroplets. J Low Temp Phys 202, 444–455 (2021). https://doi.org/10.1007/s10909-020-02553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02553-9

Keywords

Navigation