Skip to main content
Log in

Neutral Vortex Necklace in a Trapped Planar Superfluid

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study quantum vortex states consisting of a ring of vortices with alternating sign, in a homogeneous superfluid confined to a circular domain. We find an exact stationary solution of the point vortex model for the neutral vortex necklace. We investigate the stability of the necklace state within both the point-vortex model and the Gross–Pitaevskii equation describing a trapped atomic Bose–Einstein condensate at low temperature. The point-vortex stationary states are found to also be stationary states of the Gross–Pitaevskii equation provided the finite thickness of the outer fluid boundary is accounted for. Under significant perturbation, the Gross–Pitaevskii evolution and point-vortex model exhibit instability as expected for metastable states. The perturbed vortex necklace exhibits sensitivity to the perturbation, suggesting a route to seeding vortex chaos or quantum turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In preparing this manuscript we discovered that this analytical result was found using a different approach in the doctoral thesis of Q. Dai [30].

  2. For similar reasons, it is not desirable to work in a rotating frame, as the neutral necklace is non-rotating.

  3. A detailed treatment of integrability is given by Newton [50].

References

  1. H. Helmholtz, Lond. Edinb. Dubl. Philos. Mag. J. Sci. 33(226), 485 (1867). https://doi.org/10.1080/14786446708639824

    Article  Google Scholar 

  2. Gustav Robert Kirchhoff, Vorlesungenüber Mathematische Physik: Mechanik, vol. 1 (Teubner, Stuttgart, 1876)

    MATH  Google Scholar 

  3. E.A. Novikov, Zhurnal Eksperimental noi i Teoreticheskoi Fiziki 68, 1868 (1975)

    ADS  Google Scholar 

  4. L. Onsager, Il Nuovo Cimento (1943–1954) 6(2), 279 (1949). https://doi.org/10.1007/BF02780991

    Article  MathSciNet  Google Scholar 

  5. G. Gauthier, M.T. Reeves, X. Yu, A.S. Bradley, M.A. Baker, T.A. Bell, H. Rubinsztein-Dunlop, M.J. Davis, T.W. Neely, Science 364(6447), 1264 (2019). https://doi.org/10.1126/science.aat5718

    Article  ADS  MathSciNet  Google Scholar 

  6. S.P. Johnstone, A.J. Groszek, P.T. Starkey, C.J. Billington, T.P. Simula, K. Helmerson, Science 364(6447), 1267 (2019). https://doi.org/10.1126/science.aat5793

    Article  ADS  MathSciNet  Google Scholar 

  7. T.W. Neely, E.C. Samson, A.S. Bradley, M.J. Davis, B.P. Anderson, Phys. Rev. Lett. 104(16), 160401 (2010). https://doi.org/10.1103/PhysRevLett.104.160401

    Article  ADS  Google Scholar 

  8. K. Sasaki, N. Suzuki, H. Saito, Phys. Rev. Lett. 104(15), 150404 (2010). https://doi.org/10.1103/PhysRevLett.104.150404

    Article  ADS  Google Scholar 

  9. L.M. Pismen, Vortices in Nonlinear Fields. From Liquid Crystals to Superfluids, from Non-Equilibrium Patterns to Cosmic Strings, 1st edn. (Oxford University Press, New York, 1999)

    MATH  Google Scholar 

  10. A.S. Bradley, B.P. Anderson, Phys. Rev. X 2(4), 041001 (2012). https://doi.org/10.1103/PhysRevX.2.041001

    Article  Google Scholar 

  11. K. Henderson, C. Ryu, C. MacCormick, M.G. Boshier, New J. Phys. 11(4), 043030 (2009). https://doi.org/10.1088/1367-2630/11/4/043030

    Article  ADS  Google Scholar 

  12. G. Gauthier, I. Lenton, N.M. Parry, M. Baker, M.J. Davis, H. Rubinsztein-Dunlop, T.W. Neely, Optica 3(10), 1136 (2016). https://doi.org/10.1364/OPTICA.3.001136

    Article  ADS  Google Scholar 

  13. E.C. Samson, K.E. Wilson, Z.L. Newman, B.P. Anderson, Phys. Rev. A 93(2), 023603 (2016). https://doi.org/10.1103/PhysRevA.93.023603

    Article  ADS  Google Scholar 

  14. T. Aioi, T. Kadokura, T. Kishimoto, H. Saito, Phys. Rev. X 1, 021003 (2011). https://doi.org/10.1103/PhysRevX.1.021003

    Article  Google Scholar 

  15. M.T. Reeves, T.P. Billam, B.P. Anderson, A.S. Bradley, Phys. Rev. A 89(5), 053631 (2014). https://doi.org/10.1103/PhysRevA.89.053631

    Article  ADS  Google Scholar 

  16. T.P. Simula, M.J. Davis, K. Helmerson, Phys. Rev. Lett. 113(16), 165302 (2014). https://doi.org/10.1103/PhysRevLett.113.165302

    Article  ADS  Google Scholar 

  17. X. Yu, T.P. Billam, J. Nian, M.T. Reeves, A.S. Bradley, Phys. Rev. A 94(2), 023602 (2016). https://doi.org/10.1103/PhysRevA.94.023602

    Article  ADS  Google Scholar 

  18. X. Yu, A.S. Bradley, Phys. Rev. Lett. 119(18), 185301 (2017). https://doi.org/10.1103/PhysRevLett.119.185301

    Article  ADS  Google Scholar 

  19. M.M. Cawte, X. Yu, B.P. Anderson, A.S. Bradley, SciPost Phys. 6(3), 032 (2019). https://doi.org/10.21468/SciPostPhys.6.3.032

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Groszek, M. Davis, T. Simula, SciPost Phys. 8(3), 039 (2020). https://doi.org/10.21468/SciPostPhys.8.3.039

    Article  ADS  MathSciNet  Google Scholar 

  21. M.T. Reeves, T.P. Billam, B.P. Anderson, A.S. Bradley, Phys. Rev. Lett. 110(10), 104501 (2013). https://doi.org/10.1103/PhysRevLett.110.104501

    Article  ADS  Google Scholar 

  22. H. Aref, Fluid Dyn. Res. 39(1–3), 5 (2007). https://doi.org/10.1016/j.fluiddyn.2006.04.004

    Article  ADS  MathSciNet  Google Scholar 

  23. T.J. Stieltjes, Acta Math. 6, 321 (1885). https://doi.org/10.1007/BF02400421

    Article  MathSciNet  Google Scholar 

  24. H. Aref, J. Fluid Mech. 290(1), 167 (1995). https://doi.org/10.1017/S002211209500245X

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Adler, J. Moser, Commun. Math. Phys. 61(1), 1 (1978). https://doi.org/10.1007/BF01609465

    Article  ADS  Google Scholar 

  26. J. Kim, A. Fetter, Phys. Rev. A 70(4), 043624 (2004). https://doi.org/10.1103/PhysRevA.70.043624

    Article  ADS  Google Scholar 

  27. L. Kurakin, J. Math. Fluid Mech. 7(3), S376 (2005). https://doi.org/10.1007/s00021-005-0166-6

    Article  MathSciNet  Google Scholar 

  28. J.B. Kadtke, L.J. Campbell, Phys. Rev. A 36(9), 4360 (1987). https://doi.org/10.1103/PhysRevA.36.4360

    Article  ADS  Google Scholar 

  29. T. Bartsch, A. Pistoia, SIAM J. Appl. Math. 75(2), 726 (2015). https://doi.org/10.1137/140981253

    Article  MathSciNet  Google Scholar 

  30. T. Bartsch, Q. Dai, J. Differ. Equ. 260(3), 2275 (2016). https://doi.org/10.1016/j.jde.2015.10.002

    Article  ADS  Google Scholar 

  31. C. Kuhl, J. Math. Anal. Appl. 433(2), 1531 (2016). https://doi.org/10.1016/j.jmaa.2015.08.055

    Article  MathSciNet  Google Scholar 

  32. R. Navarro, R. Carretero-González, P.J. Torres, P.G. Kevrekidis, D.J. Frantzeskakis, M.W. Ray, E. Altuntaş, D.S. Hall, Phys. Rev. Lett. 110(22), 225301 (2013). https://doi.org/10.1103/PhysRevLett.110.225301

    Article  ADS  Google Scholar 

  33. L. Crasovan, G. Molina-Terriza, J. Torres, L. Torner, V. Perez-Garcia, D. Mihalache, Phys. Rev. E 66(3), 036612 (2002). https://doi.org/10.1103/PhysRevE.66.036612

    Article  ADS  Google Scholar 

  34. L. Crasovan, V. Vekslerchik, V. Perez-Garcia, J. Torres, D. Mihalache, L. Torner, Phys. Rev. A 68(6), 063609 (2003). https://doi.org/10.1103/PhysRevA.68.063609

    Article  ADS  Google Scholar 

  35. S. Middelkamp, P.J. Torres, P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, P. Schmelcher, D.V. Freilich, D.S. Hall, Phys. Rev. A 84(1), 011605 (2011). https://doi.org/10.1103/PhysRevA.84.011605

    Article  ADS  Google Scholar 

  36. M. Mottonen, S. Virtanen, T. Isoshima, M. Salomaa, Phys. Rev. A 71(3), 033626 (2005). https://doi.org/10.1103/PhysRevA.71.033626

    Article  ADS  Google Scholar 

  37. S. Middelkamp, P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, P. Schmelcher, Phys. Rev. A 82(1), 013646 (2010). https://doi.org/10.1103/PhysRevA.82.013646

    Article  ADS  Google Scholar 

  38. G. Theocharis, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, Y.S. Kivshar, Phys. Rev. Lett. 90(12), 120403 (2003). https://doi.org/10.1103/PhysRevLett.90.120403

    Article  ADS  Google Scholar 

  39. A.M. Barry, F. Hajir, P.G. Kevrekidis, J. Phys. A Math. Theor. 48(15), 155205 (2015). https://doi.org/10.1088/1751-8113/48/15/155205

    Article  ADS  Google Scholar 

  40. C.C. Lin, Proc. Nat. Acad. Sci. U.S.A. 27(12), 570 (1941). https://doi.org/10.1073/pnas.27.12.570

    Article  ADS  MathSciNet  Google Scholar 

  41. C.C. Lin, Proc. Nat. Acad. Sci. 27(12), 575 (1941). https://doi.org/10.1073/pnas.27.12.575

    Article  ADS  MathSciNet  Google Scholar 

  42. V.W. de Spinadel, Nonlinear Anal. Theory Methods Appl. 36(6), 721 (1999). https://doi.org/10.1016/S0362-546X(98)00123-0

    Article  Google Scholar 

  43. L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Clarendon Press, Oxford, 2003)

    MATH  Google Scholar 

  44. M. Reeves, Quantum Analogues of Two-Dimensional Classical Turbulence. Thesis, University of Otago (2017)

  45. J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, SIAM Rev. 59(1), 65 (2017). https://doi.org/10.1137/141000671

    Article  MathSciNet  Google Scholar 

  46. C. Tsitouras, Comput. Math. Appl. 62(2), 770 (2011). https://doi.org/10.1016/j.camwa.2011.06.002

    Article  MathSciNet  Google Scholar 

  47. C. Rackauckas, Q. Nie, J. Open Res. Softw. 5(1), 15 (2017). https://doi.org/10.5334/jors.151

    Article  Google Scholar 

  48. A.S. Bradley, VortexDistributions.jl. (2019). https://github.com/AshtonSBradley/VortexDistributions.jl

  49. A. Richaud, V. Penna, R. Mayol, M. Guilleumas, Phys. Rev. A 101(1), 013630 (2020). https://doi.org/10.1103/PhysRevA.101.013630

    Article  ADS  Google Scholar 

  50. P.K. Newton, The N-Vortex Problem Applied Mathematical Sciences, vol. 145 (Springer, New York, 2001). https://doi.org/10.1007/978-1-4684-9290-3

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to Xiaoquan Yu for stimulating discussions. This work was supported by Marsden Grant UOO1762. MC and AB acknowledge financial support from the Marsden Fund (Grant No. UOO1726), and the Dodd-Walls Centre for Photonic and Quantum Technologies. MR was partially supported by the Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies (Project No. CE170100039), and by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bradley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Vortex Sums

1.1 Inter-Vortex Terms

The sum \(S_1\) gives the contributions to the motion of \(z_1\) from each of \(N-1\) vortices

$$\begin{aligned} S_1 = \sum _{n = 2}^{N} \frac{e^{i\pi n}}{1 - e^{i 2\pi (n-1)/N}}. \end{aligned}$$
(29)

If the system being solved consists of a single dipole, then the total number of vortices is \(N = 2\) and the summation \(S_1\) is reduced to the single term

$$\begin{aligned} S_1 = \left( \frac{e^{i\pi 2}}{1 - e^{i 2\pi (2-1)/N}}\right) = \frac{1}{2}. \end{aligned}$$
(30)

As we now show, this result holds for any even number of vortices. If the number of dipoles is greater than one, then we can shift the index of the summation and use the fact that the sum is always over an odd number of terms to find

$$\begin{aligned} S_1= & {} - \sum _{k = 1}^{N-1} \frac{e^{i\pi k}}{1 - e^{i 2\pi k/N}}\nonumber \\= & {} - \Bigg [ \sum _{k = 1}^{N/2-1} \frac{e^{i\pi k}}{1 - e^{i 2\pi k/N}} + \frac{e^{i\pi N/2}}{1 - e^{i 2\pi (N/2)/N}} + \sum _{k = N/2 + 1}^{N-1} \frac{e^{i\pi k}}{1 - e^{i 2\pi k/N}} \Bigg ],\quad \end{aligned}$$
(31)

or

$$\begin{aligned} S_1 = -\frac{e^{i\pi N/2}}{2} - \left[ \sum _{k = 1}^{N/2-1} \frac{e^{i\pi k}}{1 - e^{i 2\pi k/N}} + \sum _{k = N/2 + 1}^{N-1} \frac{e^{i\pi k}}{1 - e^{i 2\pi k/N}} \right] . \end{aligned}$$
(32)

The second sum can be cast in terms of the same index as the first. We first shift the index on the second sum

$$\begin{aligned} S_1 = -\frac{e^{i\pi N/2}}{2} - \left[ \sum _{k = 1}^{N/2-1} \frac{e^{i\pi k}}{1 - e^{i 2\pi k/N}} + \sum _{k = 1}^{N/2-1} \frac{e^{i\pi (k+N/2)}}{1 - e^{i 2\pi (k+N/2)/N}} \right] , \end{aligned}$$
(33)

and then invert the order of summation by letting \(l = N/2-k\) and substituting it into the second sum, and finally relabel \(l\rightarrow k\) to give

$$\begin{aligned} S_1 = -\frac{e^{i\pi N/2}}{2} - \sum _{k = 1}^{N/2-1} \left[ \frac{e^{i\pi k}}{1 - e^{i 2\pi k/N}} + \frac{e^{i\pi (N-k)}}{1 - e^{i 2\pi (N-k)/N}} \right] . \end{aligned}$$
(34)

Using the fact that \(e^{i\pi k}=e^{i\pi (N-k)}\) since N is even, we have

$$\begin{aligned} S_1= & {} -\frac{e^{i\pi N/2}}{2} - \sum _{k = 1}^{N/2-1} e^{i\pi k} \left[ \frac{1}{1 - e^{i 2\pi k/N}} + \frac{1}{1 - e^{-i 2\pi k/N}} \right] \\= & {} -\frac{e^{i\pi N/2}}{2} - \sum _{k = 1}^{N/2-1} e^{i\pi k} \\= & {} \frac{(-1)^{N/2-1}}{2} - \sum _{k = 1}^{N/2-1} e^{i\pi k}. \end{aligned}$$

If \(N/2-1\) is even, the first term is 1/2 and the second is 0; if \(N/2-1\) is odd the first term is \(-1/2\) and the second is 1. Hence, \(S_1= 1/2\).

1.2 Vortex Image Terms

The second summation is the contribution from all of the vortex-images to the motion of the vortex \(z_1\). It is given by

$$\begin{aligned} S_2 = - \left( \frac{d_N}{R}\right) ^2\sum _{n=1}^{N} \frac{\kappa _n e^{-i 2\pi (n-1)/N}}{1- (d_N/R)^2 e^{-i 2\pi (n-1)/N} }. \end{aligned}$$
(35)

To simplify, we let \(a = (d_N/R)^2\)

$$\begin{aligned} S_2= -a\sum _{n=1}^N\frac{e^{i\pi n} e^{-i(n-1)2\pi /N}}{1-a e^{-i(n-1)2\pi /N}} = a\sum _{k=0}^{N-1}\frac{e^{ik(N/2-1)2\pi /N}}{1-a e^{-ik2\pi /N}}. \end{aligned}$$
(36)

The geometric series Fourier transform pairs, valid for \(a\ne 1\) are

$$\begin{aligned}&\sum _{j=0}^{N-1}e^{-ijk2\pi /N}\;a^j=\frac{1-a^N}{1-ae^{-ik2\pi /N}}, \end{aligned}$$
(37)
$$\begin{aligned}&\frac{1}{N}\sum _{k=0}^{N-1}e^{ijk2\pi /N}\frac{1-a^N}{1-ae^{-ik2\pi /N}}=a^j, \end{aligned}$$
(38)

where j can be chosen either positive or negative (the latter requiring \(a\rightarrow a^{-1}\)). Since we have initially made the choice \((-1)^k=e^{ik\pi }\), the transform (38) with positive choice \(j\equiv N/2-1\) gives

$$\begin{aligned} a\sum _{k=0}^{N-1}\frac{e^{ik(N/2-1)2\pi /N}}{1-ae^{-ik2\pi /N}}=aN\frac{a^{(N/2-1)}}{1-a^N}, \end{aligned}$$
(39)

with the result

$$\begin{aligned} S_2=\frac{N(d_N/R)^N}{1-(d_N/R)^{2N}}. \end{aligned}$$
(40)

If we combine (11) and (40), Eq. (10) becomes

$$\begin{aligned} \frac{1}{2}+\frac{N(d_N/R)^N}{1-(d_N/R)^{2N}}=0, \end{aligned}$$
(41)

or, in terms of \(x=(d_N/R)^N\), the equation \(x^2-2Nx-1=0\), with positive root \(x=N+\sqrt{N^2+1}\) giving

$$\begin{aligned} d_N/R=(N+\sqrt{N^2+1})^{1/N} >1, \end{aligned}$$
(42)

that describes the location of the images. The vortex locations are given by the second allowed choice for the phases: \((-1)^k=e^{ik\pi }\), and \(j=-N/2-1\), instead giving the sum (12) and the location of the vortices (14).

B GPE Stationary States from Point-Vortex

In Fig. 7 the \(N = 4,6,8,10\) stationary PVM necklace state positions of the first vortex in each necklace are marked in yellow. To the left of each PVM stationary position marked in yellow, are the perturbed GPE trajectories of the first vortex in each necklace simulated over duration \(t = 2000 \xi /c\). To the left of the \(N=4\), PVM stationary position is three perturbed GPE trajectories. The trajectories that had their initial positions perturbed from the PVM stationary position by \(-0.4\) and \(-0.6\) are shown in orange and sky-blue, respectively. These trajectories orbit a common center. The trajectory with initial position perturbed by \(-0.5\) stays within a range of \(0.1\xi \) from the duration of the simulation.

Fig. 7
figure 7

Trajectories from GPE simulations of perturbed necklace states. Only the trajectories of the first vortex in each state are shown. \(d_4,d_6,d_8\) and \(d_{10}\) mark the positions of the PVM stationary necklace state. To the left of each PVM stationary state marker are the trajectories of the first vortex in each state for different perturbed initial conditions (Color figure online)

The GPE trajectories of the perturbed \(N=6\) necklace state are to the left of the \(d_6\) yellow marker. The trajectory of the first vortex in the necklace perturbed inward by \(-0.6\xi \) from the PVM prediction is shown in sky-blue, and stays within a range of \(0.1\xi \) over duration \(t = 2000 \xi /c\). Similarly, the perturbation of \(-0.6\xi \) from the PVM leads to a tight oscillation around the true stationary point for both the \(N=8\) and \(N=10\) necklace respectively. For necklace states with \(N>10\), the GPE trajectories become unstable on increasing shorter time scales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cawte, M.M., Reeves, M.T. & Bradley, A.S. Neutral Vortex Necklace in a Trapped Planar Superfluid. J Low Temp Phys 202, 310–328 (2021). https://doi.org/10.1007/s10909-020-02547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02547-7

Keywords

Navigation