Skip to main content

Advertisement

Log in

Study on a Depressed Collector for a 75 GHz Low-Voltage Compact Gyrotron for Industrial Application

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The low-voltage compact gyrotron is suitable for industrial applications. However, the beam-wave interaction efficiency is low in conventional low-voltage gyrotron. To improve the whole tube efficiency, a compact depressed collector is introduced in developing a 75 GHz low-voltage compact gyrotron. The compact depressed collector is directly connected to the output waveguide. It is grounded and isolated with the cavity by a ceramic ring which is easy to be connected with the application system. The design of the original tube electron beam voltage and electron beam current are 10 kV and 1.2 A. In the particle-in-cell (PIC) simulation, the operating mode is TE0,1 and the generated power is 1.2 kW operated at the frequency of 75.5 GHz, which corresponds to an electron efficiency of 10%. When the depressed collector is performed and the electron reflux is under 5%, the efficiency of the whole tube can reach 30%, and when the reflux rate is controlled at about 15%, the efficiency of the whole tube can reach 50%. The dissipation power would be sufficiently reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Nusinovich Gregory et al. “Introduction to the Physics of Gyrotrons,” Johns Hopkins University Press: Baltimore, MD, USA, 2012.

  2. M. Thumm, J. Infrared Milli. Terahz Waves, 41(1), 1–140 (2020).

    Article  MathSciNet  Google Scholar 

  3. V. L. Bratman, A. E. Fedotov, Y. K. Kalynov, V. N. Manuilov, and I. V. Osharin, EPJ Web Conf., 149, 04039 (2017).

    Article  Google Scholar 

  4. B. Kulke, IEEE Trans. Electron Devices, 19(1), 71–79 (2008).

    Article  Google Scholar 

  5. M. Yu. Glyavin, A. V. Chirkov, G. G. Denisov, A. P. Fokin, V. V. Kholoptsev, A. N. Kuftin, A. G. Luchinin, G. Yu. Golubyatnikov, V. I. Malygin, M. V. Morozkin, V. N. Manuilov, M. D. Proyavin, A. S. Sedov, E. V. Sokolov, E. M. Tai, A. I. Tsvetkov, and V. E. Zapevalov, Rev. Sci. Instrum., 86(5), 1–4 (2015).

    Article  Google Scholar 

  6. Joseph, I.; Goldstein, D.E.; Newbury, J.R.; Michael, N.W.M.; Ritchie, J.H.J.; Scott, D.C.J. Scanning Electron Microscopy and X-ray Microanalysis, 4th ed.; Springer: New York, NY, USA, 2018; pp. 39–63.

  7. A. Singh and S. Rajapatirana, IEEE Trans. Plasma Sci., 27(2), 490–502 (1999).

    Article  Google Scholar 

  8. V. L. Bratman, A. E. Fedotov, A. P. Fokin, M. Y. Glyavin, V. N. Manuilov, and I. V. Osharin, "Operation of a sub-terahertz CW gyrotron with an extremely low voltage," Physics of Plasmas, vol. 24, p. 113105, 2017.

  9. I. V. Bandurkin, A. E. Fedotov, Yu. K. Kalynov, I. V. Osharin, A. V. Savilov, Nikolai A. Zavolsky, V. L. Bratman, “Efficient excitation of high axial modes in simulations of low-voltage gyrotron,” In Proceedings ofthe 2017 International Vacuum Electronics Conference (IVEC),  London, UK,  24-26 April 2017.

  10. M. K. Hornstein, V. S. Bajaj, R. G. Griffin, and R. J. Temkin, IEEE Trans. Plasma Sci., 35(1), 27–30 (2007).

    Article  Google Scholar 

  11. D. Lu, W. Fu, X. Guan, T. Yang, Y. Yan, “Design of a 75GHz Low Voltage-Continuous Wave Gyrotron with Mode Converter,” In Proceedings ofthe 2019 International Vacuum Electronics Conference (IVEC), Busan, South Korea, 28 April–1 May 2019.

  12. E. M. Choi, A. J. Cerfon, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin. Fusion Science & Technology, 52(2), 334-339, 2007.

    Article  Google Scholar 

  13. V. Kesari, R. Sudhakar, D. Jayateertha, P. Srikrishna, and R. Seshadri, J. Electromagn. Waves Appl., 33(9), 1107–1118, (2019).

    Google Scholar 

  14. C. Wu, I. G. Pagonakis, G. Gantenbein, S. Illy, M. Thumm, and J. Jelonnek, Phys. Plasmas, 24(4), 043102 (2017).

    Article  Google Scholar 

  15. B. Piosczyk, C. T. Latrou, G. Dammertz, and M. Thumm, IEEE Trans. Plasma Sci., 24(3), 579–585 (1996).

    Article  Google Scholar 

  16. K. Sakamoto, M. Tsuneoka, A. Kasugai, T. Imai, T. Kariya, K. Hayashi, Y. Mitsunaka, Phys. Rev. Lett., 73(26), 3532–3535, (1994).

    Article  Google Scholar 

  17. M. Thumm, G. G. Denisov, K. Sakamoto, and M. Q. Tran, Nucl. Fusion, 59, 073001 (2019).

    Article  Google Scholar 

  18. W. Fu, X. Guan, C. Chen, X. Li, X. Yuan, and Y. Yan, IEEE Trans. Electron Devices, 61(7), 2531–2537 (2014).

    Article  Google Scholar 

  19. X. Guan, W. Fu, and Y. Yan, J. Infrared, Millimeter, Terahertz Waves, 38(12), 1457–1470 (2017).

    Article  Google Scholar 

  20. M. E. Read, W. G. Lawson, A. J. Dudas, and A. Singh, IEEE Trans. Electron Devices, 37(6), 1579–1589 (1990).

    Article  Google Scholar 

  21. R. Yan, D. Wang, H. Li, M. Mu, Y. Lian, and Y. Luo, IEEE Trans. Electron Devices, 66(3), 1512–1518 (2019).

    Article  Google Scholar 

  22. X. Guan, W. Fu, D. Lu, Y. Yan, T. Yang, and X. Yuan, IEEE Trans. Electron Devices, 66(6), 2752–2757 (2019).

    Article  Google Scholar 

  23. S. Cauffman, M. Blank, P. Borchard, and K. Felch, “Simulation of Secondary Electrons in a Megawatt-Class Gyrotron Collector with Voltage Depression and Magnetic Sweeping” In Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves, Paris, France, 1–6 September 2019.

  24. V. N. Manuilov, M. V. Morozkin, O. I. Luksha, M. Yu Glyavin, Infrared Physics & Technology, 91, 46-54 (2018)

    Article  Google Scholar 

  25. G. Ling, B. Piosczyk, and M. K. Thumm, IEEE Trans. Plasma Sci., 28(3), 606–613 (2000).

    Article  Google Scholar 

  26. B. Goplen, L. Ludeking, D. Smith, G. Warren, Computer Physics Communications, 87(1-2),54-86 (1995).

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 61971097, the National Key Research and Development Program of China under 2019YFA0210202, the Sichuan Science and Technology Program under Grant 2018HH0136, and the Terahertz Science and Technology Key Laboratory of Sichuan Province Foundation under Grant THZSC201801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Fu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Fu, W., Guan, X. et al. Study on a Depressed Collector for a 75 GHz Low-Voltage Compact Gyrotron for Industrial Application. J Infrared Milli Terahz Waves 42, 211–219 (2021). https://doi.org/10.1007/s10762-020-00761-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00761-8

Keywords

Navigation