Skip to main content
Log in

The effect of superhydrophobic surface topography on underwater corrosion resistance of steel

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

This article describes the study of the topography effect of superhydrophobic surfaces on the corrosion protection performance of steel through the air plastron behavior when subjected to an underwater environment. A random superhydrophobic surface was fabricated using spray coating and characterized for morphology and wettability by scanning electron microscopy (SEM) and goniometer measurements, respectively. By comparing the coated surfaces both with and without air plastron, it was found that superhydrophobicity postponed the corrosion of the coated steel specimens. This increase in corrosion protection of the superhydrophobic surface was due to the air plastron created by the superhydrophobicity in underwater immersion. Since different areas showed differing air plastron lifetimes (wetting behavior), it was assumed that the underlying topography of the superhydrophobic coating controlled the air plastron lifetime. To investigate this behavior, the micron scale topography of the different areas was studied using the technique of laser confocal microscopy over the specific areas and correlating with air plastron lifetime. Using the theoretical analysis based on superhydrophobic robustness and assuming the solid fraction is the same for different locations, it was demonstrated that the feature size [extracted by roughness analysis as root-mean-square (RMS)] correlated with the air plastron lifetime. It was confirmed from the plot of RMS and air plastron lifetime that smaller feature sizes could extend the air plastron lifetime and provide better anticorrosion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Renner, FU, Stierle, A, Dosch, H, Kolb, DM, Lee, T-L, Zegenhagen, J, “Initial Corrosion Observed on the Atomic Scale.” Nature, 439 707 (2006)

    Article  CAS  Google Scholar 

  2. Dwivedi, D, Lepková, K, Becker, T, “Carbon Steel Corrosion: A Review of Key Surface Properties and Characterization Methods.” RSC Adv., 7 4580–4610 (2017)

    Article  CAS  Google Scholar 

  3. Revie, RW, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, pp. 1–4. Wiley, New York (2008)

    Book  Google Scholar 

  4. Schweitzer, PA, Corrosion and Corrosion Protection Handbook, pp. 13–14. CRC Press, Boca Raton (1989)

    Google Scholar 

  5. Ogawa, T, Koseki, T, “Effect of Composition Profiles on Metallurgy and Corrosion Behavior of Duplex Stainless-Steel Weld Metals.” Weld. J., 68 181 (1989)

    Google Scholar 

  6. Marshall, PI, Gooch, TG, “Effect of Composition on Corrosion Resistance of High-Alloy Austenitic Stainless-Steel Weld Metals.” Corrosion, 49 514–526 (1993)

    Article  CAS  Google Scholar 

  7. Krishnamurthy, S, Khobaib, M, Robertson, E, Froes, FH, “Corrosion Behavior of Rapidly Solidified Mg Nd and Mg Y Alloys.” Mater. Sci. Eng., 99 507–511 (1988)

    Article  CAS  Google Scholar 

  8. Ha, HM, Miller, JR, Payer, JH, “Devitrification of Fe-Based Amorphous Metal SAM 1651 and the Effect of Heat-Treatment on Corrosion Behavior.” J. Electrochem. Soc., 156 C246–C252 (2009)

    Article  CAS  Google Scholar 

  9. Raja, PB, Sethuraman, MG, “Natural Products as Corrosion Inhibitor for Metals in Corrosive Media—A Review.” Mater. Lett., 62 113–116 (2008)

    Article  CAS  Google Scholar 

  10. Pistofidis, N, Vourlias, G, Konidaris, S, Pavlidou, E, Stergiou, A, Stergioudis, G, “Microstructure of Zinc Hot-Dip Galvanized Coatings Used for Corrosion Protection.” Mater. Lett., 60 786–789 (2006)

    Article  CAS  Google Scholar 

  11. Hosking, NC, Ström, MA, Shipway, PH, Rudd, CD, “Corrosion Resistance of Zinc–Magnesium Coated Steel.” Corros. Sci., 49 3669–3695 (2007)

    Article  CAS  Google Scholar 

  12. Grundmeier, G, Schmidt, W, Stratmann, M, “Corrosion Protection by Organic Coatings: Electrochemical Mechanism and Novel Methods of Investigation.” Electrochim. Acta., 45 2515–2533 (2000)

    Article  CAS  Google Scholar 

  13. Wang, S, Jiang, L, “Definition of Superhydrophobic States.” Adv. Mater., 19 3423–3424 (2007)

    Article  CAS  Google Scholar 

  14. Vazirinasab, E, Jafari, R, Momen, G, “Application of Superhydrophobic Coatings as a Corrosion Barrier: A Review.” Surf. Coat. Technol., 341 40–56 (2018)

    Article  CAS  Google Scholar 

  15. Zhang, D, Wang, L, Qian, H, Li, X, “Superhydrophobic Surfaces for Corrosion Protection: A Review of Recent Progresses and Future Directions.” J. Coat. Technol. Res., 13 11–29 (2016)

    Article  Google Scholar 

  16. Callies, M, Quéré, D, “On Water Repellency.” Soft Matter., 1 55–61 (2005). https://doi.org/10.1039/b501657f

    Article  CAS  Google Scholar 

  17. Quéré, D, “Non-sticking Drops.” Reports Prog. Phys., 68 2495–2532 (2005). https://doi.org/10.1088/0034-4885/68/11/R01

    Article  Google Scholar 

  18. Ejenstam, L, Ovaskainen, L, Rodriguez-Meizoso, I, Wågberg, L, Pan, J, Swerin, A, Claesson, PM, “The Effect of Superhydrophobic Wetting State on Corrosion Protection–The AKD Example.” J. Colloid Interface Sci., 412 56–64 (2013)

    Article  CAS  Google Scholar 

  19. Wang, N, Xiong, D, “Superhydrophobic Membranes on Metal Substrate and Their Corrosion Protection in Different Corrosive Media.” Appl. Surf. Sci., 305 603–608 (2014)

    Article  CAS  Google Scholar 

  20. Wang, P, Zhang, D, Qiu, R, Wu, J, “Super-Hydrophobic Metal-Complex Film Fabricated Electrochemically on Copper as a Barrier to Corrosive Medium.” Corros. Sci., 83 317–326 (2014)

    Article  CAS  Google Scholar 

  21. Zhang, D, Qian, H, Wang, L, Li, X, “Comparison of Barrier Properties for a Superhydrophobic Epoxy Coating Under Different Simulated Corrosion Environments.” Corros. Sci., 103 230–241 (2016)

    Article  CAS  Google Scholar 

  22. Liu, T, Yin, Y, Chen, S, Chang, X, Cheng, S, “Super-Hydrophobic Surfaces Improve Corrosion Resistance of Copper in Seawater.” Electrochim. Acta., 52 3709–3713 (2007)

    Article  CAS  Google Scholar 

  23. Liu, T, Chen, S, Cheng, S, Tian, J, Chang, X, Yin, Y, “Corrosion Behavior of Super-Hydrophobic Surface on Copper in Seawater.” Electrochim. Acta., 52 8003–8007 (2007)

    Article  CAS  Google Scholar 

  24. Liu, K, Zhang, M, Zhai, J, Wang, J, Jiang, L, “Bioinspired Construction of Mg-Li Alloys Surfaces with Stable Superhydrophobicity and Improved Corrosion Resistance.” Appl. Phys. Lett., 92 1–4 (2008). https://doi.org/10.1063/1.2917463

    Article  CAS  Google Scholar 

  25. Wang, Z, Li, Q, She, Z, Chen, F, Li, L, Zhang, X, Zhang, P, “Facile and Fast Fabrication of Superhydrophobic Surface on Magnesium Alloy.” Appl. Surf. Sci., 271 182–192 (2013). https://doi.org/10.1016/j.apsusc.2013.01.158

    Article  CAS  Google Scholar 

  26. Peng, CW, Chang, KC, Weng, CJ, Lai, MC, Hsu, CH, Hsu, SC, Li, SY, Wei, Y, Yeh, JM, “UV-Curable Nanocasting Technique to Prepare Bio-Mimetic Super-Hydrophobic Non-Fluorinated Polymeric Surfaces for Advanced Anticorrosive Coatings.” Polym. Chem., 4 926–932 (2013). https://doi.org/10.1039/c2py20613g

    Article  CAS  Google Scholar 

  27. Rao, AV, Latthe, SS, Mahadik, SA, Kappenstein, C, “Mechanically Stable and Corrosion Resistant Superhydrophobic Sol-Gel Coatings on Copper Substrate.” Appl. Surf. Sci., 257 5772–5776 (2011). https://doi.org/10.1016/j.apsusc.2011.01.099

    Article  CAS  Google Scholar 

  28. Qing, Y, Yang, C, Hu, C, Zheng, Y, Liu, C, “A Facile Method to Prepare Superhydrophobic Fluorinated Polysiloxane/ZnO Nanocomposite Coatings with Corrosion Resistance.” Appl. Surf. Sci., 326 48–54 (2015). https://doi.org/10.1016/j.apsusc.2014.11.100

    Article  CAS  Google Scholar 

  29. Chen, X, Yuan, J, Huang, J, Ren, K, Liu, Y, Lu, S, Li, H, “Large-Scale Fabrication of Superhydrophobic Polyurethane/Nano-Al2O3 Coatings by Suspension Flame Spraying for Anti-Corrosion Applications.” Appl. Surf. Sci., 311 864–869 (2014). https://doi.org/10.1016/j.apsusc.2014.05.186

    Article  CAS  Google Scholar 

  30. Khorsand, S, Raeissi, K, Ashrafizadeh, F, “Corrosion resistance and Long-Term Durability of Super-Hydrophobic Nickel Film Prepared by Electrodeposition Process.” Appl. Surf. Sci., 305 498–505 (2014). https://doi.org/10.1016/j.apsusc.2014.03.123

    Article  CAS  Google Scholar 

  31. She, Z, Li, Q, Wang, Z, Tan, C, Zhou, J, Li, L, “Highly Anticorrosion, Self-Cleaning Superhydrophobic Ni-Co Surface Fabricated on AZ91D Magnesium Alloy.” Surf. Coat. Technol., 251 7–14 (2014). https://doi.org/10.1016/j.surfcoat.2014.03.060

    Article  CAS  Google Scholar 

  32. Qiu, R, Zhang, D, Wang, P, “Superhydrophobic-Carbon Fibre Growth on a Zinc Surface for Corrosion Inhibition.” Corros. Sci., 66 350–359 (2013)

    Article  CAS  Google Scholar 

  33. Balmert, A, Bohn, HF, Ditsche-Kuru, P, Barthlott, W, “Dry Under Water: Comparative Morphology and Functional Aspects of Air-Retaining Insect Surfaces.” J. Morphol., 272 442–451 (2011)

    Article  Google Scholar 

  34. Jones, PR, Hao, X, Cruz-Chu, ER, Rykaczewski, K, Nandy, K, Schutzius, TM, Varanasi, KK, Megaridis, CM, Walther, JH, Koumoutsakos, P, “Sustaining Dry Surfaces Under Water.” Sci. Rep., 5 12311 (2015)

    Article  CAS  Google Scholar 

  35. Golovin, K, Boban, M, Mabry, JM, Tuteja, A, “Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability.” ACS Appl. Mater. Interfaces., 9 11212–11223 (2017). https://doi.org/10.1021/acsami.6b15491

    Article  CAS  Google Scholar 

  36. Gose, JW, Golovin, K, Boban, M, Mabry, JM, Tuteja, A, Perlin, M, Ceccio, SL, “Characterization of Superhydrophobic Surfaces for Drag Reduction in Turbulent Flow.” J. Fluid Mech., 845 560–580 (2018)

    Article  CAS  Google Scholar 

  37. Nahum, T, Dodiuk, H, Kenig, S, Panwar, A, Barry, C, Mead, J, “The Effect of Composition and Thermodynamics on the Surface Morphology of Durable Superhydrophobic Polymer Coatings.” Nanotechnol. Sci. Appl., 10 53–68 (2017). https://doi.org/10.2147/NSA.S123447

    Article  CAS  Google Scholar 

  38. Poetes, R, Holtzmann, K, Franze, K, Steiner, U, “Metastable Underwater Superhydrophobicity.” Phys. Rev. Lett., 105 166104 (2010)

    Article  Google Scholar 

  39. Lv, P, Xue, Y, Shi, Y, Lin, H, Duan, H, “Metastable States and Wetting Transition of Submerged Superhydrophobic Structures.” Phys. Rev. Lett., 112 196101 (2014)

    Article  Google Scholar 

  40. Tuteja, A, Choi, W, Ma, M, Mabry, JM, Mazzella, SA, Rutledge, GC, McKinley, GH, Cohen, RE, “Designing Superoleophobic Surfaces.” Science (80), 318 1618–1622 (2007). https://doi.org/10.1126/science.1148326

    Article  CAS  Google Scholar 

  41. Tuteja, A, Choi, W, Mabry, JM, McKinley, GH, Cohen, RE, “Robust Omniphobic Surfaces.” Proc. Natl. Acad. Sci., 105 18200–18205 (2008). https://doi.org/10.1073/pnas.0804872105

    Article  Google Scholar 

  42. Kim, CJ, Liu, TL, “Turning a Surface Superrepellent Even to Completely Wetting Liquids.” Science., 346 1096–1100 (2014)

    Article  Google Scholar 

  43. Larmour, IA, Bell, SEJ, Saunders, GC, “Remarkably Simple Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition.” Angew. Chemie Int. Ed., 46 1710–1712 (2007)

    Article  CAS  Google Scholar 

  44. Govardhan, RN, Srinivas, GS, Asthana, A, Bobji, MS, “Time Dependence of Effective Slip on Textured Hydrophobic Surfaces.” Phys. Fluids., (2009). https://doi.org/10.1063/1.3127123

    Article  Google Scholar 

  45. Lee, C, Kim, CJ, “Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction.” Phys. Rev. Lett., 106 1–4 (2011). https://doi.org/10.1103/PhysRevLett.106.014502

    Article  CAS  Google Scholar 

  46. Lee, SG, Ham, DS, Lee, DY, Bong, H, Cho, K, “Transparent Superhydrophobic/Translucent Superamphiphobic Coatings Based on Silica–Fluoropolymer Hybrid Nanoparticles.” Langmuir, 29 15051–15057 (2013)

    Article  CAS  Google Scholar 

  47. Campos, R, Guenthner, AJ, Meuler, AJ, Tuteja, A, Cohen, RE, McKinley, GH, Haddad, TS, Mabry, JM, “Superoleophobic Surfaces Through Control of Sprayed-on Stochastic Topography.” Langmuir, 28 9834–9841 (2012). https://doi.org/10.1021/la301480s

    Article  CAS  Google Scholar 

  48. Rajappan, A, Golovin, K, Tobelmann, B, Pillutla, V, Abhijeet, W, Choi, A, Tuteja, GH, “McKinley, Influence of Textural Statistics on Drag Reduction by Scalable, Randomly Rough Superhydrophobic Surfaces in Turbulent FlowMcKinley, Influence of Textural Statistics on Drag Reduction by Scalable, Randomly Rough Superhydrophobic Surfaces in Turbulent Flow.” Phys. Fluids., 31 42107 (2019)

    Article  Google Scholar 

  49. Yuan, Y, Choi, SO, Kim, J, “Analysis of Contact Area Between Water and Irregular Fibrous Surface for Prediction of Wettability.” RSC Adv., 6 73313–73322 (2016). https://doi.org/10.1039/c6ra15389e

    Article  CAS  Google Scholar 

  50. Whitehouse, DJ, Handbook of Surface and Nanometrology, pp. 5–14. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  51. Varanasi, KK, Deng, T, Hsu, M, Bhate, N, “Hierarchical Superhydrophobic Surfaces Resist Water Droplet Impact.” Tech. Proc. NSI Nanotechnology Conf., Houston, TX (2009)

  52. He, Y, Jiang, C, Wang, S, Yin, H, Yuan, W, “Control Wetting State Transition by Micro-Rod Geometry.” Appl. Surf. Sci., 285 682–687 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant (Code No. N00014-16-R-BA01) from the Office of Naval Research. We thank Olympus Inc. for the characterization with the industrial laser confocal microscope (LEXT 5000) in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joey Mead.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Zhang, J., Keaney, E. et al. The effect of superhydrophobic surface topography on underwater corrosion resistance of steel. J Coat Technol Res 18, 685–693 (2021). https://doi.org/10.1007/s11998-020-00433-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00433-1

Keywords

Navigation