Skip to main content
Log in

Limited-scale field trial confirmed differences in growth and agarose characteristics in life-cycle stages of industrially important marine red alga Gracilaria dura (Gracilariales, Rhodophyta)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The red alga Gracilaria dura is economically important due to its high-quality agarose. Previous studies with wild populations reported the existence of specific differences in functional traits as well as agar characteristics among life cycle stages. In farmed populations, such differences can be exploited for commercial gains. For that, the variation among stages still needs to be well established under farming scenarios. Here, we compared the life cycle stages of G. dura regarding morphological and anatomical structures, growth performance under preliminary field trials, characteristics of agarose of cultivated biomass with biochemical (NMR) and molecular profiling (SCoT). The male gametophyte was found to have a significantly higher growth rate of 6.23 ± 0.59% day−1 than the tetrasporophyte (5.10 ± 0.14% day−1) and cystocarpic female gametophyte (2.67 ± 0.32% day−1). A maximum agarose yield of 28.6 ± 1.53% was obtained from the tetrasporophyte, significantly higher than 27.4 ± 0.60% in cystocarpic female gametophyte and 25.2 ± 0.36% in male gametophyte. The gel strength of agarose from male gametophytes was 2384 ± 124.13 g cm−2, which was significantly higher than the 1900 ± 50 g cm−2 and 2122 ± 124.03 g cm−2 recorded from tetrasporophytes and cystocarpic female gametophytes, respectively. A metabolomic study by NMR spectroscopy showed critical differences in alanine, lactate and isethionic acid among stages. The genetic correlation studied with the SCoT marker showed an average polymorphism of 47.02%. The average heterozygosity and Shannon-Wiener index were 0.63 and 1.06 respectively. This study of characterising and differentiating isomorphic life phases of G. dura by a decisive biomarker could be a valuable reference point to select an appropriate cultivar for commercial farming and breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbot IA (1988) Some species of Gracilaria and Polycavernosa from Thailand. In: Abbott IA (ed) Taxonomy of economic seaweeds with reference to some Pacific and Caribbean species Volume II. The California Sea Grant College Program Publication, University of California, pp 137–150

  • Baghel RS, Kumari P, Bijo AJ, Gupta V, Reddy CRK, Jha B (2011) Genetic analysis and marker assisted identification of life phases of red alga Gracilaria corticata (J. Agardh). Mol Biol Rep 38:4211–4218

    Article  CAS  PubMed  Google Scholar 

  • Barufi JB, De Oliveira EC, Plastino EM, De Oliveira MC (2010) Life history, morphological variability and growth rates of the life phases of Gracilaria tenuistipitata (Rhodophyta: Gracilariales) in vitro. Sci Mar 74:297–303

    Article  Google Scholar 

  • Chadar DA, Chudasama NA, Vadodariya N, Meena R, Prasad K, Siddhanta AK (2019) Protein mimicking functions of nano-size monoamido amino acids derived from polysaccharides of marine origin. Macromol Chem Phys 220:201900201

    Article  Google Scholar 

  • Chaudhary JP, Kondaveeti S, Gupta V, Prasad K, Meena R (2014) Preparation and functional evaluation of agarose derivatives. J Appl Polym Sci 131:40630

    Article  Google Scholar 

  • Chew KW, Show PL, Yap YJ, Juan JC, Phang SM, Ling TC, Chang JS (2018) Sonication and grinding pre-treatments on Gelidium amansii seaweed for the extraction and characterization of agarose. Front Environ Sci Eng 12:2

    Article  Google Scholar 

  • Chudasama NA, Prasad K, Siddhanta AK (2016) Agarose functionalization: synthesis of PEG-agarose amino acid nano-conjugate–its structural ramifications and interactions with BSA in a varying pH regime. Carbohydr Polym 151:735–742

    Article  CAS  PubMed  Google Scholar 

  • Collard BC, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Report 27:86

    Article  CAS  Google Scholar 

  • De Toni GB (1900) Sylloge algarum omnium hucusque cognitarum. Vol. IV. Florideae. Sectio II. pp. [i-iv], 387-774 + 775-776 [Index]. Patavii [Padova]: Sumptibus auctoris

  • Destombe C, Godin J, Nocher M, Richerd S, Valero M (1993) Differences in response between haploid and diploid isomorphic phases of Gracilaria verrucosa (Rhodophyta: Gigartinales) exposed to artificial environmental conditions. Hydrobiologia 204/205:219–223

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2018) InfoStat version. Centro de Transferencia InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

  • Efendi F, Handajani R, Nursalam N (2015) Searching for the best agarose candidate from genus Gracilaria, Eucheuma, Gelidium and local brands. Asian Pac J Trop Biomed 5:865–869

    Article  CAS  Google Scholar 

  • Faria AV, Bonomi-Barufi J, Plastino EM (2017) Ecotypes of Gracilaria caudata (Gracilariales, Rhodophyta): physiological and morphological approaches considering life history phases. J Appl Phycol 29:707–719

    Article  CAS  Google Scholar 

  • Freile-Pelegrín Y, Murano E (2005) Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresour Technol 96:295–302

    Article  PubMed  Google Scholar 

  • Gao YH, Zhu Y, Tong ZK, Xu ZY, Jiang XF, Huang CH (2014) Analysis of genetic diversity and relationships among genus Lycoris based on start codon targeted (SCoT) marker. Biochem Syst Ecol 57:221–226

    Article  CAS  Google Scholar 

  • Garcia BG, Vidal RRL, Rinaudo M (2000) Preparation and structural characterization of O-acetyl agarose with low degree of substitution. Polímeros: Ciência e Tecnología 10:155–161

    Article  CAS  Google Scholar 

  • Gargiulo GM, De Masi F, Tripodi G (1992) Morphology, reproduction and taxonomy of the Mediterranean species of Gracilaria (Gracilariales, Rhodophyta). Phycologia 31:53–80

    Article  Google Scholar 

  • Guillemin ML, Sepúlveda RD, Correa JA, Destombe C (2013) Differential ecological responses to environmental stress in the life history phases of the isomorphic red alga Gracilaria chilensis (Rhodophyta). J Appl Phycol 25:215–224

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: https://www.algaebase.org

  • Gupta V, Baghel RS, Kumar M, Kumari P, Mantri VA, Reddy CRK, Jha B (2011) Growth and agarose characteristics of isomorphic gametophyte (male and female) and sporophyte of Gracilaria dura and their marker assisted selection. Aquaculture 318:389–396

    Article  Google Scholar 

  • Gupta V, Thakur RS, Reddy CRK, Jha B (2013) Central metabolic processes of marine macrophytic algae revealed from NMR based metabolome analysis. RSC Adv 3:7037–7047

    Article  CAS  Google Scholar 

  • Hoyle MD (1978) Agar studies in two Gracilaria species (G. bursapastoris (Gmelin) Silva and G. coronopifolia J. Ag.) from Hawaii. I. Yield and gel strength in the gametophyte and tetrasporophyte generations. Bot Mar 21:343–346

    Google Scholar 

  • Jaiswar S, Mantri VA (2019) Life cycle-based selection of elite germplasm in industrially important red alga Gracilaria dura: implications for commercial farming. Curr Sci 117:1177–1178

    Google Scholar 

  • Kain J, Destombe C (1995) A review of the life history, reproduction and phenology of Gracilaria. J Appl Phycol 7:269–281

    Article  Google Scholar 

  • Kim DH, Henriquez NP (1979) Yields and gel strengths of agar from cystocarpic and tetrasporic plants of Gracilaria verrucosa (Florideophyceae). In: Jensen A, Stein JR (eds) Proceedings of the Ninth Internationa Seaweed Symposium. Princeton, Science Press, pp 257–262

    Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2011) NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 29:267–275

    Article  CAS  PubMed  Google Scholar 

  • Knoop J, Griffin JN, Barrento S (2020) Cultivation of early life history stages of Porphyra dioica from the British Isles. J Appl Phycol 32:459–471

    Article  CAS  Google Scholar 

  • Kondaveeti S, Prasad K, Siddhanta AK (2013) Functional modification of agarose: a facile synthesis of a fluorescent agarose-tryptophan based hydrogel. Carbohydr Polym 97:165–171

    Article  CAS  PubMed  Google Scholar 

  • Li XF, Sui ZH, Zhang XC (1998) Application of RAPD in genetic diversity study on Gracilaria lemaneiformis III. Phase and sex related markers. Chin J Oceanol Limnol 16:147–151

    Article  Google Scholar 

  • Mantri VA, Thakur MC, Kumar M, Reddy CRK, Jha B (2009) The carpospore culture of industrially important red alga Gracilaria dura (Gracilariales, Rhodophyta). Aquaculture 297:85–90

    Article  Google Scholar 

  • Mantri VA, Ganesan M, Gupta V, Krishnan P, Siddhanta AK (2019) An overview on agarophyte trade in India and need for policy interventions. J Appl Phycol 31:3011–3023

    Article  Google Scholar 

  • Mantri VA, Shah Y, Thiruppathi S (2020) Feasibility of farming the agarose-yielding red alga Gracilaria dura using tube-net cultivation in the open sea along the Gujarat coast of NW India. Appl Phycol 1:12–19

    Article  Google Scholar 

  • Marinho-Soriano E, Bourret E (2005) Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta). Bioresour Technol 96:379–382

    Article  CAS  PubMed  Google Scholar 

  • Marinho-Soriano E, Bourret E, De Casabianca ML, Maury L (1999) Agar from the reproductive and vegetative stages of Gracilaria bursa-pastoris. Bioresour Technol 67:1–5

    Article  Google Scholar 

  • Marinho-Soriano E, Morales C, Moreira WSC (2002) Cultivation of Gracilaria (Rhodophyta) in shrimp pond effluents in Brazil. Aquac Res 33:1081–1086

    Article  Google Scholar 

  • Meena R, Siddhanta AK, Prasad K, Ramavat BK, Eswaran K, Thiruppathi S, Rao PS (2007) Preparation, characterization and benchmarking of agarose from Gracilaria dura of Indian waters. Carbohydr Polym 69:179–188

    Article  CAS  Google Scholar 

  • Meena R, Prasad K, Siddhanta AK (2011) Preparation of superior quality products from two Indian agarophytes. J Appl Phycol 23:183–189

    Article  CAS  Google Scholar 

  • Meena R, Chaudhary JP, Agarwal PK, Maiti P, Chatterjee S, Raval HD, Ghosh PK (2014) Surfactant-induced coagulation of agarose from aqueous extract of Gracilaria dura seaweed as an energy-efficient alternative to the conventional freeze–thaw process. RSC Adv 4:28093–28098

    Article  CAS  Google Scholar 

  • Meneses I, Santelices B (1999) Strain selection and genetic variation in Gracilaria chilensis (Gracilariales, Rhodophyta). J Appl Phycol 11:241–246

    Article  Google Scholar 

  • Pickering TD, Gordon ME, Tong LJ (1990) Seasonal growth, density, reproductive phenology and agar quality of Gracilaria sordida (Gracilariales, Rhodophyta) at Mokomoko Inlet, New Zealand. Hydrobiologia 204:253–262

    Article  Google Scholar 

  • Porse H, Rudolph B (2017) The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J Appl Phycol 29:2187–2200

    Article  Google Scholar 

  • Prasad K, Trivedi KP, Siddhanta AK, Bhattacharya A (2005) Surface tension and fluorescence studies of polysaccharide-surfactant solutions: agar-CTAB. Indian J Chem A 44:2445–2449

    Google Scholar 

  • Rabanal SF, Azanza RV (1999) Outplanting of laboratory-generated carposporelings of Gracilariopsis bailinae off northern Philippines. Hydrobiologia. 398/399:463–468

    Article  Google Scholar 

  • Reddy CRK, Baghel RS, Kumari N, Kumari P, Gupta V, Prasad K, Meena R (2016) An integrated process to recover a spectrum of bioproducts from fresh seaweeds. U.S. Patent Application No 15/109:232

  • Sambhwani K, Modi J, Singhala A, Bramhabatt H, Mishra A, Mantri VA (2020) Analysis of functional traits in female gametophytic and tetrasporophytic life-phases of industrially important red alga Gracilaria dura (Rhodophyta: Gracilariacae). J Appl Phycol 32:1961–1969

    Article  CAS  Google Scholar 

  • Saminathan KR, Ashok KS, Veeragurunathan V, Mantri VA (2015) Seedling production in the industrially important agarophyte Gracilaria dura (Gracilariales, Rhodophyta). J Appl Phycol 27:1541–1548

    Article  CAS  Google Scholar 

  • Santelices B (1992) Strain selection of clonal seaweeds. Prog Phycol Res 8:85–116

    Google Scholar 

  • Santelices B, Varela D (1995) Regenerative capacity of Gracilaria fragments: effects of size, reproductive state and position along the axis. J Appl Phycol 7:501–506

    Article  Google Scholar 

  • Santos R, Melo RA (2018) Global shortage of technical agars: back to basics (resource management). J Appl Phycol 30:2463–2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma AK, Chudasama NA, Prasad K, Siddhanta AK (2017) Agarose based large molecular systems: synthesis of fluorescent aromatic agarose amino acid nano-conjugates–their pH-stimulated structural variations and interactions with BSA. Carbohydr Res 449:37–46

    Article  CAS  PubMed  Google Scholar 

  • Siddhanta AK, Shanmugam M, Ramavat BK, Mody KH (1997) Agar from Gracilaria dura of the West coast of India. Seaweed Res Util 19:95–99

    Google Scholar 

  • Siddhanta AK, Meena R, Prasad K., Ramavat BK, Ghosh PK, Eswaran K, Thiruppathi S, Mantri VA (2005) Cost-effective process for preparing agarose from Gracilaria spp. US Patent 2005/0267296; PCT Patent W0 2005/118830

  • Sosa PA, Lindstrom SC (1999) Isozymes in macroalgae (seaweeds): genetic differentiation, genetic variability and applications in systematics. Eur J Phycol 34:427–442

    Article  Google Scholar 

  • Subbaramaiah K, Thomas PC, Rao PSN (1990) Effect of ethyl methanesulfonate on growth and agar content in marine alga Gelidiella acerosa (Rhodophyta). Indian J Mar Sci 19:288

    Google Scholar 

  • Ursi S, Plastino E (2001) Crescimento in vitro de linhagens de coloração vermelha e verde clara de Gracilaria birdiae (Gracilariales, Rhodophyta) em dois meios de cultura: análise de diferentes estádios reprodutivos. Braz J Bot 24:587–594

    Article  Google Scholar 

  • Veeragurunathan V, Eswaran K, Malarvizhi J, Gobalakrishnan M (2015a) Cultivation of Gracilaria dura in the open sea along the southeast coast of India. J Appl Phycol 27:2353–2365

    Article  CAS  Google Scholar 

  • Veeragurunathan V, Eswaran K, Saminathan KR, Mantri VA, Ajay G, Jha B (2015b) Feasibility of Gracilaria dura cultivation in the open sea on the Southeastern coast of India. Aquaculture 438:68–74

    Article  Google Scholar 

  • Vieira VMNCS, Engelen AH, Huanel OR, Guillemin ML (2018a) Haploid females in the isomorphic biphasic life-cycle of Gracilaria chilensis excel in survival. BMC Evol Biol 18:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira VMNCS, Engelen AH, Huanel OR, Guillemin ML (2018b) Differentiation of haploid and diploid fertilities in Gracilaria chilensis affect ploidy ratio. BMC Evol Biol 18:183

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang TP, Chang LL, Chang SN, Wang EC, Hwang LC, Chen YH, Wang YM (2012) Successful preparation and characterization of biotechnological grade agarose from indigenous Gelidium amansii of Taiwan. Process Biochem 47:550–554

    Article  CAS  Google Scholar 

  • Whyte JNC, Englar JR, Saunders RG, Lindsay JC (1981) Seasonal variations in the biomass, quantity and quality of agar, from the reproductive and vegetative stages of Gracilaria (verrucosa type). Bot Mar 24:493–502

    Article  Google Scholar 

  • Windarsih G, Utami DW, Yuriyah S (2019) Genetic diversity and productivity of Gracilaria coronopifolia as alternative for food resource based on RAPD marker. Biodiversitas 20:3758–3765

  • Yamamoto H (1984) An evaluation of some vegetative features and some interesting problems in Japanese populations of Gracilaria. Hydrobiologia. 116/117:51–54

    Article  Google Scholar 

  • Yao SS, Xia ZY, En LZ, Qing LW (1984) The yield and properties of agar extracted from different life stages of Gracilaria verrucosa. Hydrobiologia 116:551–553

    Google Scholar 

  • Yu CH, Phang SM (2013) Effects of irradiance and salinity on the growth of carpospore-derived tetrasporophytes of Gracilaria edulis and Gracilaria tenuistipitata var liui (Rhodophyta). J Appl Phycol 25:787–794

    Article  CAS  Google Scholar 

  • Yu Z, Xiaoting F, Delin D, Jiachao A, Xin G (2019) Preparation and characterization of agar, agarose, and agaropectin from the red alga Ahnfeltia plicata. Chin J Oceanol Limnol 37:815–824

    Article  Google Scholar 

  • Zhang XC, Fei XG (1990) Cultivation and hybridization experiments on Gracilaria tenuistipitata (Rhodophyta). In: Miyati S, Kenkyukai MB (eds) Current topics in marine biotechnology, Proceeding of the 1st International Marine Biotechnology Conference. pp 203–214

  • Zhang X, Meer JPVD (1988) A genetic study on Gracilaria sjoestedtii. Can J Bot 66:2022–2026

    Article  Google Scholar 

  • Zhang Y, Xiaoting F, Delin D, Jiachao X, Xin G (2019) Preparation and characterization of agar, agarose, and agaropectin from the red alga Ahnfeltia plicata. J Oceanol Limnol 37:815–824

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Vasco M. N. C. S. Vieira, for the critical comments on the original manuscript. We are also thankful to two anonymous reviewers for their constructive suggestions, which has improved the manuscript considerably. We are grateful to the Director, CSIR-CSMCRI for the facilities. This manuscript has CSIR-PRIS registration number 147/2019.

Funding

This work was carried out by a grant received from Council for Scientific and Industrial Research (CSIR), New Delhi, Government of India. KS received financial assistance in the form of a senior research fellow from the University Grant Commission.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vaibhav A. Mantri, Ramavatar Meena or Rajendra Singh Thakur.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantri, V.A., Shah, Y., Balar, N. et al. Limited-scale field trial confirmed differences in growth and agarose characteristics in life-cycle stages of industrially important marine red alga Gracilaria dura (Gracilariales, Rhodophyta). J Appl Phycol 33, 1059–1070 (2021). https://doi.org/10.1007/s10811-020-02356-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02356-1

Keywords

Navigation