Skip to main content
Log in

Effects of sulfur limitation on nitrogen and sulfur uptake and lipid accumulation in Scenedesmus acuminatus

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Sulfur limitation is a frequently exploited method for inducing lipid accumulation in microalgae. However, there is little understanding of the underlying mechanism of this process. Hence, a study was conducted to determine the effects of sulfur limitation on nitrogen and sulfur uptake, lipid production strategies, and photosynthetic physiological characteristics of Scenedesmus acuminatus. A low sulfur concentration (0.076 mM; 0.25S group) decreased nitrate reductase activity and inhibited nitrogen absorption. The highest lipid productivity was obtained in the 0.75S (0.229 mM) group (221.93 mg L−1 day−1), significantly higher than that of the 0.5S (0.153 mM) and 0.25S groups (p < 0.05). Acetyl-coenzyme A carboxylase (ACCase) activity was upregulated in the 0.25S group to promote the accumulation of lipid and fatty acids, and generated the maximum lipid and fatty acid content (47.27% and 43.98% of dry weight, respectively). An important supplementation of energy for lipid accumulation under low-sulfur conditions is to drive a higher proportion of cyclic electron flow. Superoxide dismutase and peroxidase activities and malondialdehyde content increased at lower sulfur concentrations, indicating the elevated antioxidant activity of S. acuminatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bacsi I, Vasas G, Suranyi G, Mhamvas M, Mathe C, Toth E, Grigorszky I, Gaspar A, Toth S, Borbely G (2006) Alteration of cylindrospermopsin production in sulfate- or phosphate-starved cyanobacterium Aphanizomenon ovalisporum. FEMS Microbiol Lett 259:303–310

    Article  CAS  PubMed  Google Scholar 

  • Bischof K, Rautenberger R, Brey L, Perezllorens JL (2006) Physiological acclimation to gradients of solar irradiance within mats of the filamentous green macroalga Chaetomorpha linum from southern Spain. Mar Ecol Prog Ser 306:165–175

    Article  CAS  Google Scholar 

  • Brányiková I, Maršálková B, Douchan J, Brányik T, Bišová K, Zachleder V, Vitova M (2011) Microalgae-novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Article  PubMed  CAS  Google Scholar 

  • Cakmak T, Angun P, Ozkan AD, Cakmak ZE, Olmez TT, Tekinay T (2012) Nitrogen and sulfur deprivation differentiate lipid accumulation targets of Chlamydomonas reinhardtii. Bioengineered 3:343–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen WM, Liu H (2015) Intracellular nitrite accumulation: the cause of growth inhibition of Microcystis aeruginosa exposure to high nitrite level. Phycol Res 63:197–201

    Article  CAS  Google Scholar 

  • Davis MS, Solbiati JO, Cronan JE (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275:28593–28598

    Article  CAS  PubMed  Google Scholar 

  • Degrenne B, Pruvost J, Titica M, Takache H, Legrand J (2011) Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii. Part II: definition of model-based protocols and experimental validation. Biotechnol Bioeng 108:2288–2299

    Article  CAS  PubMed  Google Scholar 

  • Dummermuth A, Karsten U, Fisch KM, Konig GM, Wiencke C (2003) Responses of marine macroalgae to hydrogen-peroxide stress. J Exp Mar Biol Ecol 289:103–121

    Article  CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57:223–231

    Article  Google Scholar 

  • Fan JH, Cui YB, Wan MX, Wang WL, Li YG (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes T, Fernandes I, Andrade C, Cordeiro N (2020) Assessing the impact of sulfur concentrations on growth and biochemical composition of three marine microalgae. J Appl Phycol 32:967–975

    Article  CAS  Google Scholar 

  • Gao S, Wang GC (2012) The enhancement of cyclic electron flow around photosystem I improves the recovery of severely desiccated Porphyra yezoensis (Bangiales, Rhodophyta). J Exp Bot 63:4349–4358

    Article  CAS  PubMed  Google Scholar 

  • Giordano M (2013) Homeostasis: an underestimated focal point of ecology and evolution. Plant Sci 211:92–101

    Article  CAS  PubMed  Google Scholar 

  • Giordano M, Raven JA (2014) Nitrogen and sulfur assimilation in plants and algae. Aquat Bot 118:45–61

    Article  CAS  Google Scholar 

  • Giordano M, Pezzoni V, Hell R (2000) Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiol 124:857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano M, Norici A, Hell R (2005) Sulfur and phytoplankton: acquisition, metabolism and impact on the environment. New Phytol 166:371–382

    Article  CAS  PubMed  Google Scholar 

  • He JY, Xi LJ, Sun XZ, Ge BS, Liu DJ, Han ZX, Pu XN, Huang F (2018) Enhanced hydrogen production through co-cultivation of Chlamydomonas reinhardtii CC-503 and a facultative autotrophic sulfide-oxidizing bacterium under sulfurated conditions. Int J Hydrogen Energy 43:15005–15013

  • Jamal A, Fazli IS, Ahmad S, Kim K, Oh D, Abdin MZ (2006) Effect of sulfur on nitrate reductase and ATP sulfurylase activities in groundnut (Arachis hypogea L.). J Plant Biol 49:513–517

    Article  CAS  Google Scholar 

  • Li TT, Gargouri M, Feng J, Park J, Gao DF, Chao M, Dong T, Gang DR, Chen SL (2015) Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresour Technol 80:250–257

    Article  CAS  Google Scholar 

  • Li T, Xu J, Gao BY, Xiang WZ, Li AF, Zhang CW (2016) Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Res 16:481–491

    Article  Google Scholar 

  • Libeisson Y, Thelen JJ, Fedosejevs E, Harwood JL (2019) The lipid biochemistry of eukaryotic algae. Prog Lipid Res 74:31–68

    Article  CAS  Google Scholar 

  • Liu ZW, Wang Q, Zou DH, Yang YF (2018) Effects of selenite on growth, photosynthesis and antioxidant system in seaweeds, Ulva fasciata (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta). Algal Res 36:115–124

    Article  CAS  Google Scholar 

  • Lv HX, Qiao CS, Zhong C, Jia SR (2018) Metabolic fingerprinting of Dunaliella salina cultured under sulfur deprivation conditions. J Appl Phycol 30:355–365

    Article  CAS  Google Scholar 

  • Maswanna T, Phunpruch S, Lindblad P, Maneeruttanarungroj C (2018) Enhanced hydrogen production by optimization of immobilized cells of the green alga Tetraspora sp. CU2551 grown under anaerobic condition. Biomass Bioenergy 111:88–95

    Article  CAS  Google Scholar 

  • Menon KR, Balan R, Suraishkumar GK (2013) Stress induced lipid production in Chlorella vulgaris: relationship with specific intracellular reactive species levels. Biotechnol Bioeng 110:1627–1636

  • Migge A, Bork C, Hell R, Becker TW (2000) Negative regulation of nitrate reductase gene expression by glutamine or asparagine accumulating in leaves of sulfur-deprived tobacco. Planta 211:587–595

    Article  CAS  PubMed  Google Scholar 

  • Mosblech A, Feussner I, Heilmann I (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem 47:511–517

    Article  CAS  PubMed  Google Scholar 

  • Ostaszewska-Bugajska M, Rychter AM, Juszczuk IM (2015) Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana. J Plant Physiol 186:25–38

    Article  PubMed  CAS  Google Scholar 

  • Ran WY, Wang HT, Liu YH, Qi M, Xiang Q, Yao CH, Zhang YK, Lan XQ (2019) Storage of starch and lipids in microalgae: biosynthesis and manipulation by nutrients. Bioresour Technol 291:121894

    Article  CAS  PubMed  Google Scholar 

  • Sajjadi B, Chen W-Y, Raman AAA, Ibrahim S (2018) Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew Sust Energ Rev 97:200–232

    Article  CAS  Google Scholar 

  • Sakarika M, Kornaros M (2017) Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: effect of different nutrient limitation strategies. Bioresour Technol 243:356–365

    Article  CAS  PubMed  Google Scholar 

  • Salbitani G, Vona V, Bottone C, Petriccione M, Carfagna S (2015) Sulfur Deprivation results in oxidative perturbation in Chlorella sorokiniana (211/8k). Plant Cell Physiol 56:897–905

    Article  CAS  PubMed  Google Scholar 

  • Sardella A, Marieschi M, Mercatali I, Zanni C, Gorbi G, Torelli A (2019) The relationship between sulfur metabolism and tolerance of hexavalent chromium in Scenedesmus acutus (Spheropleales): role of ATP sulfurylase. Aquat Toxicol 216:105320

    Article  CAS  PubMed  Google Scholar 

  • Sivaramakrishnan R, Suresh S, Pugazhendhi A, Pauline JMN, Incharoensakdiae A (2020) Response of Scenedesmus sp. to microwave treatment: enhancement of lipid, exopolysaccharide and biomass production. Bioresour Technol 312:123562

    Article  CAS  PubMed  Google Scholar 

  • Song W, Rashid N, Choi W, Lee K (2011) Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol 102:8676–8681

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Sato N, Tsuzuki M (2007) Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett 581:4519–4522

    Article  CAS  PubMed  Google Scholar 

  • Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H (2019) Enhancement of lipid accumulation in microalgae by metabolic engineering. BBA-Mol Cell Biol L 1864:552–566

    CAS  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Van-Aken O, Giraud E, Clifton R, Whelan J (2009) Alternative oxidase: a target and regulator of stress responses. Physiol Plant 137:354–361

    Article  CAS  PubMed  Google Scholar 

  • Vítová M, Bišová K, Kawano S, Zachleder V (2015) Accumulation of energy reserves in algae: from cell cycles to biotechnological applications. Biotechnol Adv 33:1204–1218

    Article  PubMed  Google Scholar 

  • Yao CH, Ai JN, Cao XP, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Chen H, He CL, Wang Q (2013) Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 16:e69225

    Article  CAS  Google Scholar 

  • Zhang Q, Lee B, Park S, Zaman R, Avice J, Ourry A, Kim T (2015) Sulfate resupply accentuates protein synthesis in coordination with nitrogen metabolism in sulfur deprived Brassica napus. Plant Physiol Biochem 87:1–8

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wu HJ, Sun MZ, Peng QQ, Wang QY, Li AF (2018) Photosynthetic physiological performance and proteomic profiling of the oleaginous algae Scenedesmus acuminatus reveal the mechanism of lipid accumulation under low and high nitrogen supplies. Photosynth Res 138:73–102

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Huang ZZ, Zheng HL, Wang QY, Li AF (2020) Growth, biochemical composition and photosynthetic performance of Scenedesmus acuminatus under different initial sulfur supplies. Algal Res 45:101728

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (41176105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Xu or Aifen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, Y., Wu, H. et al. Effects of sulfur limitation on nitrogen and sulfur uptake and lipid accumulation in Scenedesmus acuminatus. J Appl Phycol 33, 301–311 (2021). https://doi.org/10.1007/s10811-020-02319-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02319-6

Keywords

Navigation