Skip to main content
Log in

Cytomolecular analysis of mutants, breeding lines, and varieties of camelina (Camelina sativa L. Crantz)

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Camelina sativa L. Crantz (Brassicaceae family), known as camelina, has gained new attention as a re-emerging oil seed crop. With a unique seed oil profile, with the majority of the fatty acids consisting of linolenic (C18:3), oleic (C18:1), linoleic (C18:2), and eicosenoic (C20:1), camelina oil is reported to be useful as a food oil and biofuel. However, there are still many unknown factors about the structure and genetic variability of this crop. Chromosomal localization of ribosomal DNA was performed using fluorescence in situ hybridization (FISH) with 5S rDNA and 25S rDNA sequences as molecular probes on mitotic chromosomes of enzymatically digested root-tip meristematic cells. Here, we present for the first time a comparative analysis of selected genotypes (cultivars, breeding lines and mutants) of C. sativa with the use of cytogenetic techniques. The main aim of the study was to determine the intraspecific and interspecific polymorphisms in the structure of chromosomes of selected accessions using conserved 5S and 25S rDNA repetitive sequences as molecular probes. The results were compared with C. microcarpa (closely related to C. sativa) rDNA gene loci distribution. The presence of minor rDNA sites was discussed and compared with other Brassicaceae species. In addition, demonstration karyograms of C. sativa and C. microcarpa mapped with rDNA probes were prepared based on the cv. “Przybrodzka” and GE2011-02 genotype, respectively. The use of 5S and 25S rDNA probes provided an insight on the genome structure of C. sativa at the cytogenetic level and can help to understand the genome organization of this crop. The putative role of cytogenetic markers in phylogenetic analyses of camelina was discussed, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data and material are available upon reasonable request.

References

  • Abou-Ellail M, Cooke R, Sáez-Vásquez J (2011) Variations in a team: major and minor variants of Arabidopsis thaliana rDNA genes. Nucleus 2:294–299

    Article  PubMed  Google Scholar 

  • Albert PS, Gao Z, Danilova TV, Birchler JA (2010) Diversity of chromosomal karyotypes in maize and its relatives. Cytogenet Genome Res 129:6–16

    Article  CAS  PubMed  Google Scholar 

  • Ali HBM, Lysak MA, Schubert I (2005) Chromosomal localization of rDNA in the Brassicaceae. Genome 48:341–346

    Article  CAS  PubMed  Google Scholar 

  • Amosova AV, Zoshchuk SA, Volovik VT, Shirokova AV, Horuzhiy NE, Mozgova GV, Yurkevich OY, Artyukhova MA, Lemesh VA, Samatadze TE, Muravenko OV (2019) Phenotypic, biochemical and genomic variability in generations of the rapeseed (Brassica napus L.) mutant lines obtained via chemical mutagenesis. PLoS One 14:e0221699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badaeva ED, Ruban AS, Aliyeva-Schnorr L, Municio C, Hesse S, Houben A (2017) In situ hybridization to plant chromosomes. In: Liehr T (ed) Fluorescence In Situ Hybridization (FISH): Application Guide. Springer, Berlin Heidelberg, pp 477–494

    Chapter  Google Scholar 

  • Belayneh HD, Wehling RL, Cahoon E, Ciftci ON (2015) Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. J Supercrit Fluids 104:153–159

    Article  CAS  Google Scholar 

  • Berti M, Gesch R, Eynck C, Anderson J, Cermak S (2016) Camelina uses, genetics, genomics, production, and management. Ind Crop Prod 94:690–710

    Article  CAS  Google Scholar 

  • Doležel J, Kubaláková M, Bartoš J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chromosom Res 12:77–91

    Article  Google Scholar 

  • Findley SD, Cannon S, Varala K, Du J, Ma J, Hudson ME, Birchler JA, Stacey G (2010) A fluorescence in situ hybridization system for karyotyping soybean. Genetics 185:727–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490

    Article  CAS  Google Scholar 

  • Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, Heneen WK, Maluszynska J (2006) Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot 97:205–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juchimiuk-Kwasniewska J, Brodziak L, Maluszynska J (2011) FISH in analysis of gamma ray-induced micronuclei formation in barley. J Appl Genet 52:23–29

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, Higgins EE, Huebert T, Sharpe AG, Parkin IAP (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5:3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101:13554–13559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovarik A, Dadejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurasiak-Popowska D, Stuper-Szablewska K (2020) The phytochemical quality of Camelina sativa seed and oil. Acta Agric Scand Sect B Soil Plant Sci 70:39–47

    CAS  Google Scholar 

  • Kurasiak-Popowska D, Tomkowiak A, Człopińska, Bocianowski J, Weigt D, Nawracała J (2018) Analysis of yield and genetic similarity of Polish and Ukrainian Camelina sativa genotypes. Ind Crop Prod 123:667–675

    Article  CAS  Google Scholar 

  • Kus A, Kwasniewska J, Szymanowska-Pułka J, Hasterok R (2018) Dissecting the chromosomal composition of mutagen-induced micronuclei in Brachypodium distachyon using multicolour FISH. Ann Bot 122:1161–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kus A, Szymanowska-Pułka J, Kwasniewska J, Hasterok R (2019) Detecting Brachypodium distachyon chromosomes Bd4 and Bd5 in MH- and X-ray-induced micronuclei using mcFISH. Int J Mol Sci 20(11):2848

    Article  CAS  PubMed Central  Google Scholar 

  • Kwiatek M, Wiśniewska H, Apolinarska B (2013) Cytogenetic analysis of Aegilops chromosomes, potentially usable in triticale (X Triticosecale Witt.) breeding. J Appl Genet 54:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Łuczkiewicz T, Błaszczyk L (1998) Dwarf mutant of Camelina sativa L. Oilseed Crops XIX:615–620

    Google Scholar 

  • Luo Z, Brock J, Dyer JM, Kutchan T, Schachtman D, Augustin M, Ge Y, Fahlgren N, Abdel-Haleem H (2019) Genetic diversity and population structure of a Camelina sativa spring panel. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00184

  • Lysák MA, Číuhalíková J, Kubaláková M, Šimková H, Künzel G, Doležel J (1999) Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chromosom Res 7:431–444

    Article  Google Scholar 

  • Lysák MA, Mandáková T, Schranz ME (2016) Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr Opin Plant Biol 30:108–115

    Article  PubMed  Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781

    Article  CAS  PubMed  Google Scholar 

  • Mandáková T, Pouch M, Brock JR, Al-Shehbaz IA, Lysák MA (2019) Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering. Plant Cell 31:2596–2612

    PubMed  PubMed Central  Google Scholar 

  • Martin SL, Smith TW, James T, Shalabi F, Kron P, Sauder CA (2017) An update to the Canadian range, abundance, and ploidy of Camelina spp. (Brassicaceae) east of the Rocky Mountains. Botany 95:405–417

    Article  Google Scholar 

  • McStay B (2006) Nucleolar dominance: a model for rRNA gene silencing. Genes Dev 20:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Mirzaghaderi G, Marzangi K (2015) IdeoKar: an ideogram constructing and karyotype analyzing software. Caryologia 68:31–35

    Article  Google Scholar 

  • Moore G, Gale MD, Kurata N, Flavell RB (1993) Molecular analysis of small grain cereal genomes: current status and prospects. Bio/Technology 11:584–589

    CAS  Google Scholar 

  • Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogué F, Faure J-D (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15:729–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102:88–95

    Article  Google Scholar 

  • Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M (2019) Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol 222:1638–1651

    Article  PubMed  Google Scholar 

  • Ozseyhan ME, Kang J, Mu X, Lu C (2018) Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Plant Physiol Biochem 123:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ruban AS, Badaeva ED (2018) Evolution of the S-genomes in Triticum-Aegilops Alliance: evidences from chromosome analysis. Front Plant Sci 9:1756

    Article  PubMed  PubMed Central  Google Scholar 

  • Schranz ME, Lysák MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Shonnard DR, Williams L, Kalnes TN (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sustain Energy 29:382–392

    Article  CAS  Google Scholar 

  • Stimpson KM, Sullivan LL, Kuo ME, Sullivan BA (2014) Nucleolar organization, ribosomal DNA Array stability, and acrocentric chromosome integrity are linked to telomere function. PLoS One 9:e92432

    Article  PubMed  PubMed Central  Google Scholar 

  • Taketa S, Harrison G, Heslop-Harrison J (1999) Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98:1–9

    Article  CAS  Google Scholar 

  • Tepfer M, Hurel A, Tellier F, Jenczewski E (2020) Evaluation of the progeny produced by interspecific hybridization between Camelina sativa and C. microcarpa. Ann Bot 125(6):993–1002

    Article  CAS  PubMed  Google Scholar 

  • Unfried I, Gruendler P (1990) Nucleotide sequence of the 5.8S and 25S rRNA genes and of the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Res 18:4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmann J, Grausgruber H, Stift G, Dryzhyruk V, Lelley T (2005) Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breed 124:446–453

    Article  CAS  Google Scholar 

  • Walia MK, Wells MS, Cubins J, Wyse D, Gardner RD, Forcella F, Gesch R (2018) Winter camelina seed yield and quality responses to harvest time. Ind Crop Prod 124:765–775

    Article  CAS  Google Scholar 

  • Waltz E (2018) With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol 36:6–7

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Pires JC (2011) Karyotype and identification of all Homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187:37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Caldwell C, Corscadden K, He QS, Li J (2016) An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Ind Crops Prod 81:162–168

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of Plants in the Old World: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin, 4th edn. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Acknowledgments

We thank Candice Gardner and Stacey Estrada at the USDA/ARS Midwest Area—Plant Introduction Research Unit, North Central Regional Plant Introduction Station, Iowa State University, Ames (IA, USA), for providing the seeds of camelina accessions. In addition, we would like to thank all of the reviewers and manuscript editor for their careful review of the manuscript and for their excellent suggestions for improving our initial work.

Funding

This publication is being co-financed by the framework of Ministry of Science and Higher Education program as “Regional Initiative Excellence” in years 2019–2022, project no. 005/RID/2018/19.

Author information

Authors and Affiliations

Authors

Contributions

MK initiated the project. ZD, MK, and AN made the experiments and analyses, wrote the first draft, and incorporated all inputs from co-authors. MK, DKP, and JN revised the draft. MK wrote the final version of the manuscript.

Corresponding author

Correspondence to Michał T. Kwiatek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Code availability

Not applicable.

Additional information

Communicated by: Izabela Pawłowicz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary material 1-10 Variability of 5S rDNA (red) and 45S rDNA (green) loci in Camelina genotypes demonstrated by the FISH results for selected ten genotypes: (1) GE2011–02 (C. microcarpa); (2) VNIIMK17; (3) CSS-CAM38; (4) 11025; 5) 7; (6) Ukrainskij; (7) 14/3; (8) K9; (9) ‘Maczuga’ and (10) Przybrodzka. Scale bar: 5 μm.

ESM 1

(PNG 3234 kb)

High resolution image (TIF 518 kb)

ESM 2

(PNG 3424 kb)

High resolution image (TIF 588 kb)

ESM 3

(PNG 3069 kb)

High resolution image (TIF 404 kb)

ESM 4

(PNG 3227 kb)

High resolution image (TIF 649 kb)

ESM 5

(PNG 4593 kb)

High resolution image (TIF 645 kb)

ESM 6

(PNG 3274 kb)

High resolution image (TIF 782 kb)

ESM 7

(PNG 3264 kb)

High resolution image (TIF 760 kb)

ESM 8

(PNG 3022 kb)

High resolution image (TIF 815 kb)

ESM 9

(PNG 2538 kb)

High resolution image (TIF 523 kb)

ESM 10

(PNG 2613 kb)

High resolution image (TIF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwiatek, M.T., Drozdowska, Z., Kurasiak-Popowska, D. et al. Cytomolecular analysis of mutants, breeding lines, and varieties of camelina (Camelina sativa L. Crantz). J Appl Genetics 62, 199–205 (2021). https://doi.org/10.1007/s13353-020-00600-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-020-00600-5

Keywords

Navigation