Skip to main content

Advertisement

Log in

Influence of cashew Anacardium occidentale L. Cultivation on termite diversity in the Korhogo savannah zone (Northern Côte d’ivoire)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Termites play an important role in the process of decomposition of organic matter in tropical ecosystems and participate in the evolution of soil structure. This study was carried out in the north of Côte d’Ivoire to evaluate the influence of cashew tree orchards’ age on termite assemblages. The standardised method for rapid estimation (RAP) of biodiversity was used to collect termites in four (4) classes of cashew tree orchards (Class 1: ˂ 5 years, Class 2: 5–10 years, Class 3: 11–20 years, Class 4: 21 years and above) in comparison to savannah. The results showed that species richness, were low in young orchards of class 1 (9 species). This increased progressively with age to its maximum in older orchards of class 4 (30 species). These old orchards were even richer in termite species than the savannah (27 species). Shannon-Weiner diversity index varied in the same way as species richness. The abundance of termites, were low in young orchards (45 occurrences), higher in older orchards of class 4 (423 occurrences), with a predominance of fungus-growing termite species. This study showed the recovery of termite diversity in cashew tree orchards after the stoppage in agricultural activities. Suggesting that, this form of agroforestry would allow for the conservation of diversity of the soil fauna while ensuring food security in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahmad M (1950) The phylogeny of termite genera based on imago-worker mandibles. Q Rev Biol 26(4):385–385. https://doi.org/10.1086/398436

    Article  Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24(3):223–234

    Article  Google Scholar 

  • Bignell DE (2006) Termites as soil engineers and soil processors. Intestinal Microorganisms of Termites and Other Invertebrates:183–220. https://doi.org/10.1007/3-540-28185-1_8

  • Bouillon A, Mathot G (1965) Quel est ce Termite Africain? Université de Leopoldville, Congo

    Google Scholar 

  • Brooks T, Mittermeier AR, Mittermeier GC, Da Fonseca GAB, Rylands BA, Konstant RW, Flik P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor CA (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  • Brose U, Martinez ND, Williams RJ (2003) Estimating species richness: sensitivity to sample coverage and insensitivity to spatial patterns. Ecology 84:2364–2377

    Article  Google Scholar 

  • Brown GG, Benito NP, Pasini A, Sautter KS, Guimarães MF, Torres E (2003) No-tillage greatly increases earthworm populations in Paraná state, Brazil. Pedobiologia 47:764–771

    Google Scholar 

  • Cao Y, Williams DD, Larsen PD (2002) Comparison of ecological communities: the problem of sample representativeness. Ecol Monogr 72:313–318

    Article  Google Scholar 

  • Colwell RK, Elsensohn JE (2014) EstimateS turns 20: statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography 37(6):609–613

    Article  Google Scholar 

  • Coulibaly T, Akpesse AAM, Boga JP, Yapi A, Kouassi KP, Roisin Y (2016) Change in termite communities along a chronosequence of mango tree orchards in the north of Côte d’Ivoire. J Insect Conserv 20(6):1011–1019

    Article  Google Scholar 

  • Davies RG (1997) Termite species richness in fire-prone and fire protected dry deciduous dipterocarp forest in DoiSthep-Pui National Park, northern Thailand. J Trop Ecol 13:153–160

    Article  Google Scholar 

  • Dosso K, Deligne J, Yéo K, Konaté S, Linsenmair KE (2013) Changes in the termite assemblage across a sequence of land-use systems in the rural area around Lamto reserve in central Côte d’Ivoire. J Insect Conserv 17(5):1047–1057

    Article  Google Scholar 

  • Eggleton P, Bignell DE, Hauser S, Dibog L, Norgrove L, Madong B (2002) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric Ecosyst Environ 9:189–202

    Article  Google Scholar 

  • Emerson AE (1928) Termites of the Belgian Congo and the Cameroon. Bull Am Mus Nat Hist 57:401–598

    Google Scholar 

  • Fahrig L (2002) Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl 12(2):346–353. https://doi.org/10.2307/3060946

    Article  Google Scholar 

  • FIRCA (2010) La filière du progrès: A la découverte de la filière anacarde. Bulletin d’information du font interprofessionnel pour la recherche et le conseil agricoles 6:5–15

    Google Scholar 

  • Grassé PP (1986) Comportement, socialité, écologie, évolution, systématique. Termitologia, Paris 715 p

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    Article  CAS  Google Scholar 

  • Guedegbe H, Houngnandan P, Roman J, Rouland-Lefèvre C (2008) Patterns of substrate degradation by some microfungi from fungus-growing termite combs (Isoptera: Termitidae: Macrotermitinae). Sociobiology 52(3):525–541 http://www.documentation.ird.fr/hor/PAR00003051

    Google Scholar 

  • Guillaumet JL, Adjanohoun E (1971) In: Avenard JM, Eldin E, Girard G, Sircoulon J, Touchebeuf P, Guillaumet JL, Adjanohoun E, Perraud A (eds) La végétation de la Côte d’Ivoire, vol 50. Le milieu naturel de la Côte d’Ivoire, Éditions O.R.S.T.O.M., Paris, pp 161–262

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST-palaeontological statistics, ver. 1.89. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Harris WV (1966) The genus Ancistrotermes (Isoptera). Bull Br Mus Nat Hist History, (Entomol) 18(1):1–20

    Google Scholar 

  • Jones DT, Eggleton P (2000) Sampling termite assemblage in tropical forest: testing a rapid biodiversity assessment protocol. J Appl Ecol 37:191–203

    Article  Google Scholar 

  • Jouquet P, Dauber J, Lagerlo FJ, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol 32:153–164

    Article  Google Scholar 

  • Kladivko EJ (2001) Tillage systems and soil ecology. Soil Tillage Res 61:61–76

    Article  Google Scholar 

  • Konaté S, Yeo K, Yeboue L, Alonso LF, Kouassi K (2005) Evaluation rapide de la diversité des insectes des forêts classées de la Haute Dodo et du Cavally (Côte d’Ivoire), Evaluation biologique de deux forêts classées du sud-ouest de la Côte d’Ivoire. RAP Bull Biol Assessment 34:39–49

    Google Scholar 

  • Koné M, Konaté S, Yéo K, Kouassi KP, Linsenmair KE (2014) Efects of management intensity on ant diversity in cocoa plantation (Oumé, Centre west Côte d’Ivoire). J Insect Conserv 18:701–712

    Article  Google Scholar 

  • Lavelle P, Villenave C, Rouland C, Derouard L (2000) Dynamique des peuplements. Fallows in tropical Africa 1:236

    Google Scholar 

  • Marasas ME, Sarandon SJ, Cicchino AC (2001) Changes in soil arthropod functional group in a wheat crop under conventional and no tillage systems in Argentina. Appl Soil Ecol 18(1):61–68

    Article  Google Scholar 

  • Mathieu J (2004) Etude de la macrofaune du sol dans une zone de déforestation en Amazonie du Sud-Est, au Brésil, dans le contexte de l’agriculture familiale. Thèse de Doctorat, Université Pierre et Marie-Curie Paris

    Google Scholar 

  • McCarthy BC, Magurran AE (2004) Measuring biological diversity. J Torrey Bot Soc 131(3):277

    Article  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: desertification synthesis. Island press 5:563

  • Moguel P, Toledo VM (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13:11–21

    Article  Google Scholar 

  • Perfecto I, Vandermeer J, Hanson P, Cartin V (1997) Arthropod biodiversity loss and the transformation of a tropical agroecosystem. Biodivers Conserv 6(7):935–945. https://doi.org/10.1023/a:1018359429106

    Article  Google Scholar 

  • Roger-Estrade J, Anger C, Bertrand M, Richard G (2010) Tillage and soil ecology: partners for sustainable agriculture. Soil Tillage Res 111(1):33–40

    Article  Google Scholar 

  • Roisin Y, Leponce M (2004) Characterizing termite assemblages in fragmented forests: a test case in the Argentinian Chaco. Aust J Ecol 29:637–646

    Article  Google Scholar 

  • Roy-Noel J (1966) Mise au point systématique sur les Coptotermes (Isoptera) du Sénégal. Bull de l’IFAN Serie A 1:145–155

    Google Scholar 

  • Sands WA (1959) A revision of the termite of genus amitermes from the Ethiopian region (Isoptera, Termitidae, Amitermitinae). Bull Br Mus (Natural History), (Entomology) 8(4):129–156

    Google Scholar 

  • Sands WA (1972) The soldier less termites of Africa (Isoptera: Termitidae). Bull of  Br Mus (Natural History), (entomology) 18:244 

  • Sands WA (1998) The identification of worker castes of termites genera from soils of Africa and the middle east. CAB international, Wallingford, p 500

  • Schulze CH, Waltert M, Kessler PJA, Pitopang R, Veddeler D, Muhlenberg M, Gradstein SR, Leuschner C, Stefan-Dewenter I, Tscharntke T (2004) Biodiversity indicator groups of tropicalland use systems: comparing plants, birds and insects. Ecol Appl 14:1321–1333

    Article  Google Scholar 

  • Sjöstedt Y (1926) Revision der Termiten Afrikas, Kungl Svenska Vetenskapsakademiens Handlingar. Tredjeserien band 3(1):8 

  • SODEXAM (2017) État du climat de l’année 2016 en Côte d’Ivoire. www.acmad-au.org/wpcontent/uploads/.../stateofclimatein. Consulté le 10 Décembre 2017

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  Google Scholar 

  • Tylianakis JM, Klein AM, Lozada T, Tscharntke T (2006) Spatial scale of observation afects alpha, beta and gamma diversity ofcavity-nesting bees and wasps across a tropical land-use gradient. J Biogeogr 33:1295–1304

    Article  Google Scholar 

  • Villenave C, Djigal D, Brauman A, Rouland-Lefevre C (2009) Nematodes, indicators of the origin of the soil used by termites to construct biostructures. Pedobiologia 52:301–307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fodio Saint Salomon Diahuissié.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diahuissié, F.S.S., Coulibaly, T., Akpesse, A.A.M. et al. Influence of cashew Anacardium occidentale L. Cultivation on termite diversity in the Korhogo savannah zone (Northern Côte d’ivoire). Int J Trop Insect Sci 41, 1709–1715 (2021). https://doi.org/10.1007/s42690-020-00374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00374-7

Keywords

Navigation