Skip to main content
Log in

Intercomparison of Thermal Conductivity Measurements on a Nanoporous Organic Aerogel

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Due to their special combination of nanostructure and high porosity, aerogels are key materials for high performance thermal insulation. However, measuring reliable thermal conductivity values, which are essential for material’s optimization and as product parameter, is a challenging task in the case of aerogels. Experimentally derived thermal conductivity values for aerogels are so far more or less influenced by the experimental set-up and the experimental conditions and have to be carefully discussed. Here we present results of an intercomparison on thermal conductivity measurements performed for a polyurethane aerogel produced on a pilot scale as stiff panels by BASF. Prior to the intercomparison, the material was checked for reproducibility in production and homogeneity. The dependence of thermal conductivity on atmospheric pressure and temperature was also determined. We discuss the results submitted by 12 participants with respect to the different experimental techniques applied and identify experimental parameters with severe impact on the resulting thermal conductivities. The derived mean values for the thermal conductivity at 20 °C, 40 °C and 60 °C were related with relative uncertainties in the range from 0.6 % to 0.9 %. The dependence of the derived thermal conductivity values on the geographical location of the participating laboratory and the atmospheric weather conditions could be clearly observed and the precision of the results could be significantly improved by correcting for these effects. The values had to be partly corrected up to 2.5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

e :

Specific extinction coefficient (m2·kg1)

E :

Normalized deviation (1)

E :

Extinction coefficient (m1)

L :

Length (m)

T :

Temperature (K, °C)

U :

Uncertainty (W·m1·K1)

x :

Measurement value (W·m1·K1)

λ :

Thermal conductivity (W·m1·K1)

ρ :

Density (kg·m3)

τ :

Optical thickness (1)

ev :

Evacuated

g:

Gaseous

lab:

Experimentally determined value

mean:

Mean value

n:

Normalized

CIPM :

Comité International des Poids et Mesures

GHP:

Guarded-hot-plate

GUM :

Guide to the Expression of Uncertainty in Measurement

HFM:

Heat-flow meter

SEM :

Scanning electron microscope

THW:

Transient-hot-wire

THS:

Transient-hot-strip

TPS:

Transient-plane-source

References

  1. A. Berge, P. Johansson, in Report in Building Physics (Chalmers University of Technology, Department of Civil and Environmental Engineering, Gothenburg, 2012)

  2. H.P. Ebert, in Aerogels Handbook, ed. by M.A. Aegerter, N. Leventis, M.M. Koebel (Springer, New York, 2011), pp. 537–564

  3. S.S. Kistler, J. Phys. Chem. 39, 79 (1935)

    Article  Google Scholar 

  4. S. Groult, T. Budtova, Carbohydr. Polym. 196, 73 (2018). https://doi.org/10.1016/j.carbpol.2018.05.026

    Article  Google Scholar 

  5. X. Lu, M.C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, R.W. Pekala, Science 255, 971 (1992)

    Article  ADS  Google Scholar 

  6. G. Baldinelli, F. Bianchi, S. Gendelis, A. Jakovics, G.L. Morini, S. Falcioni, S. Fantucci, V. Serra, M.A. Navacerrada, C. Díaz, A. Libbra, A. Muscio, F. Asdrubali, Int. J. Therm. Sci. 139, 25 (2019). https://doi.org/10.1016/j.ijthermalsci.2019.01.037

    Article  Google Scholar 

  7. International Energy Agency, in Energy in Buildings and Communities Programme, ed. by B. Adl-Zarrabi, P. Johansson (International Energy Agency, 2020)

  8. ASTM E1530–11, ASTM International, West Conshohocken, PA (2016)

  9. ASTM C518–17, ASTM International, West Conshohocken, PA (2017)

  10. S.E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991). https://doi.org/10.1063/1.1142087.

  11. H.P. Ebert, V. Bock, O. Nilsson, J. Fricke, High Temp. High Press. 25, 11 (1993)

    Google Scholar 

  12. U. Hammerschmidt, W. Sabuga, Int. J. Thermophys. 21, 217 (2000). https://doi.org/10.1023/A:1006621324390

    Article  Google Scholar 

  13. A. Biedermann, C. Kudoke, A. Merten, E. Minogue, U. Rotermund, H.P. Ebert, U. Heinemann, J. Fricke, H. Seifert, J. Cell. Plastics 37, 467 (2001)

    Article  Google Scholar 

  14. L.V. Nielsen, H.P. Ebert, F. Hemberger, J. Fricke, A. Biedermann, M. Reichelt, U. Rotermund, High Temp. High Press. 32, 701 (2000)

    Article  Google Scholar 

  15. K. Swimm, S. Vidi, G. Reichenauer, H.P. Ebert, J. Non-Cryst. Solids 456, 114 (2017) https://doi.org/10.1016/j.jnoncrysol.2016.11.012

  16. J. Gross, G. Reichenauer, J. Fricke, J. Phys. D Appl. Phys. 21, 1447 (1988)

    Article  ADS  Google Scholar 

  17. U. Heinemann, R. Caps, J. Fricke, Int. J. Heat Mass Transf. 39, 2115 (1996)

    Article  Google Scholar 

  18. H.P. Ebert, J. Fricke, High Temp. High Press. 30, 655 (1998)

    Article  Google Scholar 

  19. GUM, in Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, 1995)

  20. EAL-P7, EAL Interlaboratory Comparisons Ed. 1 (1996)

  21. Q. Zheng, S. Kaur, C. Dames, R.S. Prasher, Int. J. Heat Mass Transf. 151, 119331 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119331

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all participants in the intercomparison for their valuable contributions, namely D. Lager (AIT), E. Günther, S. Hofmeyer, C. Steinkamp, K. Martens (BASF), P. Vöpe (DLR), M. Lauff (FIW), M. Lehmann (IFAM), B. Sonntag, T. G. Ueberall (MPA NRW), A. Lindemann (Netzsch), E. Kaschnitz (ÖGI), M. Marson-Pahle (IKV), F. Mißfeldt (TUHH), D. Kraus, K. Swimm, M.C. Arduini and L. Ulerich (ZAE). Special thanks to the company BASF AG for the provision of the specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Ebert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebert, HP., Braxmeier, S., Reichenauer, G. et al. Intercomparison of Thermal Conductivity Measurements on a Nanoporous Organic Aerogel. Int J Thermophys 42, 21 (2021). https://doi.org/10.1007/s10765-020-02775-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02775-9

Keywords

Navigation