Skip to main content
Log in

Quantum Gravity Corrections to a System of Self-gravitating Fermions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The generalized uncertainty principle (GUP) is a generalization of the Heisenberg principle motivated by several theories of quantum gravity such as string theory. It predicts the existence of a minimal distance and/or maximum momentum. Here, we study some consequences of the GUP in the context of the statistical mechanics of self-gravitating fermions. Using the GUP discretization of phase space, we formulate a gravitational Thomas-Fermi model in consistency with the minimal length prescription and analyse its physical consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fermi, E.: Atti. Accad. Naz. Lincei. (Ser. 6) 7, 342 (1928)

    Google Scholar 

  2. Thomas, L.H.: In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 23, pp 542–548. Cambridge University Press, Cambridge (1927)

  3. Ruffini, C.E.R.: Proc. 1st Australian Summer School Springer (1980)

  4. Hossenfelder, S.: Living Rev. Relativ. 16, 2 (2013)

    Article  ADS  Google Scholar 

  5. Veneziano, G.: EPL (Europhys. Lett.) 2, 199 (1986)

    Article  ADS  Google Scholar 

  6. Amati, D., Ciafaloni, M., Veneziano, G.: Phys. Lett. B 216, 41 (1989)

    Article  ADS  Google Scholar 

  7. Konishi, K., Paffuti, G., Provero, P.: Phys. Lett. B 234, 276 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. Garay, L.J.: Int. J. Mod. Phys. A 10, 145 (1995)

    Article  ADS  Google Scholar 

  9. Maggiore, M.: Phys. Lett. B 304, 65 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Scardigli, F.: Phys. Lett. B 452, 39 (1999)

    Article  ADS  Google Scholar 

  11. Sepehri, A., Pradhan, A., Pincak, R., Rahaman, F., Beesham, A., Ghaffary, T.: Int. J. Geom. Methodes Mod. Phys. 14, 1750130 (2017)

    Article  Google Scholar 

  12. Tawfik, A.N., Diab, A.M.: Rep. Prog. Phys. 78, 126001 (2015)

    Article  ADS  Google Scholar 

  13. Capozziello, S., Lambiase, G., Scarpetta, G.: Int. J. Theor. Phys. 39, 15 (2000)

    Article  Google Scholar 

  14. Sadatian, S.D.: Int. Lett. Chem. Physics and Astronomy 20, 10 (2014)

    Article  Google Scholar 

  15. Bambi, C., Urban, F.R.: Classical and Quantum Gravity 25, 095006 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Castro, C.: Foun. Phys. Lett. 10, 273 (1997)

    Article  Google Scholar 

  17. Majumder, B.: Phys. Lett. B 699, 315 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  18. Pedram, P.: Int. J. Mod. Phys. D 19, 2003 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Padmanabhan, T.: Phys. Rep. 188, 285 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ourabah, K., Tribeche, M.: Ann. Phys., vol. 342 (2014)

  21. Ourabah, K., Tribeche, M.: Phys. A: Statistical Mechanics and its Applications 393, 470 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ourabah, K., Tribeche, M.: Phys. A 392, 4477 (2013)

    Article  Google Scholar 

  23. Martinenko, E., Shivamoggi, B.K.: Phys. Rev. A 69, 052504 (2004)

    Article  ADS  Google Scholar 

  24. Á.Nagy, E.Romera: . Phys. Lett. A 373, 844 (2009)

    Article  ADS  Google Scholar 

  25. Rotondo, M., Rueda, J.A., Ruffini, R., Xue, S.-S.: Phys. Rev. C 83, 045805 (2011)

    Article  ADS  Google Scholar 

  26. Shababi, H., Ourabah, K.: Ann. Phys. 413, 168051 (2020)

    Article  Google Scholar 

  27. Shababi, H., Ourabah, K.: Phys. Lett. A 383, 1105 (2019)

    Article  ADS  Google Scholar 

  28. Vakili, B., Gorji, M.: J. Stat. Mech.: Theory and Experiment 2012, P10013 (2012)

    Article  Google Scholar 

  29. Sommerfeld, A.: Z. Phys. 47, 542 (1928)

    Article  Google Scholar 

  30. Ourabah, K., Tribeche, M.: Int. J. Mod. Phys. B 27, 1350181 (2013)

    Article  ADS  Google Scholar 

  31. Blakemore, J.: Solid-State Electron. 25, 1067 (1982)

    Article  ADS  Google Scholar 

  32. Bilić, N., Viollier, R.D.: Phys. Lett. B 408, 75 (1997)

    Article  ADS  Google Scholar 

  33. Shivamoggi, B.K.: Phys. A 248, 195 (1998)

    Article  MathSciNet  Google Scholar 

  34. Juttner, F.: Z. Phys. 47, 542 (1928)

    Article  ADS  Google Scholar 

  35. Chandrasekhar, S.: An introduction to the study of stellar structure, vol. 2 (Courier Corporation) (1957)

  36. Ashcroft, N.W., Mermin, N.D., et al.: Solid state physics [by] Neil W. Ashcroft [and] n David Mermin (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Bessiri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessiri, A., Ourabah, K. & Zerguini, T.H. Quantum Gravity Corrections to a System of Self-gravitating Fermions. Int J Theor Phys 60, 131–142 (2021). https://doi.org/10.1007/s10773-020-04669-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04669-w

Keywords

Navigation