Skip to main content
Log in

Sedimentary stratigraphy of Lake Chalco (Central Mexico) during its formative stages

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Lake Chalco lies south of the Basin of Mexico and has been the subject of studies related to Late Quaternary climate variability. In 2016, the International Continental Scientific Drilling Program “MexiDrill Project” recovered a 520-m sediment record from Lake Chalco. Magnetic susceptibility measurements revealed substantial changes in sediment physical properties between 343 and 285 m depth, suggesting changes in composition associated with fluctuations in the depositional environment. We targeted sediments in the 343–285 m interval for high-resolution facies analysis, to develop a model of Lake Chalco formation. We identified three facies associations, using sediment composition, texture, mineralogy and micro-morphological characteristics: (1) detrital facies, consisting of laminated silt, massive sand, stratified silty sand, clast-supported gravel and matrix-supported gravel; (2) biogenic facies, which include diatom ooze and bivalve coquina; and (3) volcaniclastic facies, represented by clast-supported pumice deposits. We propose that formation of Lake Chalco occurred in four stages, which we identified by changes in sediment characteristics. The first stage was an alluvial delta environment, in which debris and hyper-concentrated flows were the main sediment transport agents. The second was characterized by turbulent flows in a fluvial deltaic environment, which alternated with laminar flows associated with floodplains. The third stage was a time of fluvio-lacustrine transition in the basin, with formation of the previously identified Paleo-Chalco-I Lake, in response to wet conditions. During the fourth stage, a deep eutrophic lake formed (Paleo-Chalco-II), with an origin that appears to have been related to regional volcanism. Our working age-depth model indicates establishment of the lake at ca. 400 ± 46 ka. This paper presents the only available record of the transition from alluvial to lacustrine sedimentation of Lake Chalco. Our results allow us to establish (1) how the lake was formed and what the phases of its development were, (2) how a major volcanic event altered and transformed the lacustrine sedimentation, and (3) which climatic conditions dominated during the lake formation. The age for the onset of the lacustrine sedimentation in Chalco is for the first time constrained to around 400 ka. This enables to expand our knowledge of the climate for a time for which there is no information from terrestrial records of tropical North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

source types come from Meyers and Teranes (2001). b Percent total organic carbon (TOC) and total nitrogen (TN) that shows the main source of organic material among the sedimentary facies. c TN versus TOC/TN ratio that shows the main source of organic material in Paleo-Chalco-I and Paleo-Chalco-II. Arrows indicate the evolution of the paleolake. d Relation between δ13C and δ15N that shows limnological conditions in Paleo-Chalco-I and Paleo-Chalco-II. Arrow indicates the evolution of Paleo-Chalco-I

Fig. 8
Fig. 9

Modified from Lozano-García and Sosa-Nájera (2015). On the right is a map showing locations of the TX-1, SLT and CHA sites

Similar content being viewed by others

References

  • Acosta-Noriega E (2019) Análisis palinológico de una secuencia lacustre de 130,000 a 103,000 años A.P. del lago de Chalco, México. Dissertation, National Autonomous University of Mexico

  • Aguirre-Díaz GJ, López-Martínez M, Rendón-Márquez G (2006) La Caldera de La Catedral, Sierra de Las Cruces, una caldera al norponiente de la Ciudad de México. Reunión Anual de la Unión Geofísica Mexicana: Puerto Vallarta, Jal. México GEOS 26:160–161

    Google Scholar 

  • Arce JL, Macías JL, Vázquez-Selem L (2003) The 10.5 ka Plinian eruption of Nevado de Toluca volcano, Mexico: Stratigraphy and hazard implications. Geological Society of America Bulletin 115(2): 230–248. https://doi.org/10.1130/0016-7606(2003)115%3C0230:TKPEON%3E2.0.CO;2

  • Arce JL, Macías R, Palomo AG, Capra L, Macías JL, Layer P, Rueda H (2008) Late Pleistocene flank collapse of Zempoala Volcano (Central Mexico) and the role of fault reactivation. J Volcanol Geoth Res 177(4):944–958. https://doi.org/10.1016/j.jvolgeores.2008.07.015

    Article  Google Scholar 

  • Arce JL, Layer PW, Morales-Casique E, Benowitz JA, Rangel E, Escolero O (2013) New constraints on the subsurface geology of the Mexico City Basin: The San Lorenzo Tezonco deep well, on the basis of 40Ar/39Ar geochronology and whole-rock chemistry. J Volcanol Geoth Res 266:34–49. https://doi.org/10.1016/j.jvolgeores.2013.09.004

    Article  Google Scholar 

  • Arce JL, Layer P, Martínez I, Salinas JI, Macías-Romo MDC, Morales-Casique E, Lenhardt N (2015) Geología y estratigrafía del pozo profundo San Lorenzo Tezonco y de sus alrededores, sur de la Cuenca de México. Boletín de la Sociedad Geológica Mexicana 67(2): 123–143. Disponible en: <http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-33222015000200002&lng=es&nrm=iso>. ISSN 1405–3322.

  • Arce JL, Layer PW, Macías JL, Morales-Casique E, García-Palomo A, Jiménez-Domínguez FJ et al (2019) Geology and stratigraphy of the Mexico Basin (Mexico City), central Trans-Mexican Volcanic Belt. J Maps 15(2):320–332. https://doi.org/10.1080/17445647.2019.1593251

    Article  Google Scholar 

  • Augustinus P, Bleakley N, Deng Y, Shane P, Cochran U (2008) Rapid change in early Holocene environments inferred from lake Pupuke, Auckland city, New Zealand. J Quatern Sci 23(5):435–447. https://doi.org/10.1002/jqs.1153

    Article  Google Scholar 

  • Avendaño-Villeda DA, Caballero M, Ortega-Guerrero B, Lozano-García S, Brown E (2018) Condiciones ambientales a finales del Estadio Isotópico 6 (EI 6:> 130000 años) en el centro de México: caracterización de una sección de sedimentos laminados proveniente del Lago de Chalco. Revista mexicana de ciencias geológicas 35(2): 168–178. https://doi.org/10.22201/cgeo.20072902e.2018.2.649

  • Barker P, Telford R, Merdaci O, Williamson D, Taieb M, Vincens A, Gibert E (2000) The sensitivity of a Tanzanian crater lake to catastrophic tephra input and four millennia of climate change. Holocene 10(3): 303–310. https://doi.org/10.1191/095968300672848582

  • Batten DJ (1999) Small Palynomorphs. In: Jones TP, Rowe NP (eds) Fossil Plants and Spores: Modern techniques. The Geological Society, London, pp 15–19

    Google Scholar 

  • Bennion H, Simpson GL (2011) The use of diatom records to establish reference conditions for UK lakes subject to eutrophication. J Paleolimnol 45:469–488. https://doi.org/10.1007/s10933-010-9422-8

    Article  Google Scholar 

  • Beverage JP, Culbertson JK (1964) Hyperconcentrations of suspended sediment. J Hydraul Div 90(6):117–128

    Article  Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6(3):457–474. https://doi.org/10.1214/11-BA618

    Article  Google Scholar 

  • Bloomfield KA (1975) Late-Quaternary monogenetic volcano field in central Mexico. Geol Rundsch 64:476–497. https://doi.org/10.1007/BF01820679

    Article  Google Scholar 

  • Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22(2):205–221. https://doi.org/10.1023/A:1008078222806

    Article  Google Scholar 

  • Brown ET, Caballero M, Cabral Cano E, Fawcett PJ, Lozano-García S, Ortega B et al (2019) Scientific drilling of Lake Chalco, Basin of Mexico (MexiDrill). Scient Drill. https://doi.org/10.5194/sd-7-1-2019

  • Caballero M, Guerrero B (1998) Lake Levels since about 40,000 Years Ago at Lake Chalco, near Mexico City. Quatern Res 50(1):69–79. https://doi.org/10.1006/qres.1998.1969

    Article  Google Scholar 

  • Caballero M, Lozano-García S, Ortega-Guerrero B, Correa-Metrio A (2019) Quantitative estimates of orbital and millennial scale climatic variability in central Mexico during the last∼ 40,000 years. Quatern Sci Rev 205:62–75. https://doi.org/10.1016/j.quascirev.2018.12.002

    Article  Google Scholar 

  • Cao R, Qian S (1990) Sediment transport characteristics of hyperconcentrated flow with suspended load. In: French R (ed) Hydraulics/Hydrology of Arid Lands (H2AL). American Society of Civil Engineers, New York, pp 657–662

    Google Scholar 

  • Cronin SJ, Neall VE, Lecointre JA, Palmer AS (1999) Dynamic interactions between lahars and stream flow: A case study from Ruapehu volcano, New Zealand. Geol Soc Am Bull 111(1):28–38. https://doi.org/10.1130/0016-7606(1999)111%3C0028:DIBLAS%3E2.3.CO;2

    Article  Google Scholar 

  • Delgado-Granados H, Cassatta W, Gisbert Pinto G, Paul R (2017) Historia geológica y eruptiva del volcán Popopocatepetl. In: del Pozzo M (ed) Estudios geológicos y actualización del mapa de peligros del volcán Popocatépetl, 1st edn. Instituto de Geología, Ciudad de México, pp 13–17

    Google Scholar 

  • Edlund MB, Kingston JC (2004) Expanding sediment diatom reconstruction model to eutrophic southern Minnesota lakes. In: Heiskary S (eds) Final report to Minnesota Pollution Control Agency. CFMS Contract, Minneapolis, 32

  • Enciso-De la Vega S (1992) Propuesta de nomenclatura estratigráfica para la cuenca de México. Revista Geofísica Internacional 10(1):26–36

    Google Scholar 

  • Frederick CD, Cordova CE (2019) Prehispanic and colonial landscape change and fluvial dynamics in the Chalco Region, Mexico. Geomorphology 331:107–126. https://doi.org/10.1016/j.geomorph.2018.10.009

    Article  Google Scholar 

  • Fries C (1960) Geología del Estado de Morelos y de partes adyacentes de México y Guerrero, región central meridional de México. Universidad Nacional Autonoma de México, Ciudad de México

    Google Scholar 

  • Gabito L, Bonilla S, Antoniales D (2013) Paleolimnological reconstruction of change in a subtropical lake: a comparison of the subfossil record to limnological data. Limnetica 32(2): 175–188. https://doi.org/10.23818/limn.32.15

  • García-Palomo A, Zamorano JJ, López-Miguel C, Galván-García A, Carlos-Valerio V, Ortega R, Macías JL (2008) El arreglo morfoestructural de la Sierra de Las Cruces, México central. Revista mexicana de ciencias geológicas 25(1): 158–178. Disponible en: <http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1026-87742008000100010&lng=es&nrm=iso>. ISSN 2007–2902.

  • Garcia-Tenorio F (2008) Avalancha de escombros del Pleistoceno Tardío del cono de los Píes, Complejo Volcánico Iztaccíhuatl. Dissertation, ESIA TICOMAN–IPN

  • García-Tovar GP, Martínez-Serrano RG (2011) Geology and geochemistry of the Pleistocene lava flows from the Telapón stratovolcano, Sierra Nevada, México. Revista mexicana de ciencias geológicas 28(2): 301–322. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1026-87742011000200011&lng=es&tlng=en.

  • Gasse F, Barker P, Gell PA, Fritz SC, Chalie F (1997) Diatom-inferred salinity in palaeolakes: an indirect tracer of climate change. Quatern Sci Rev 16(6):547–563. https://doi.org/10.1016/S0277-3791(96)00081-9

    Article  Google Scholar 

  • Gell P, Sluiter IR, Fluin J (2002) Seasonal and inter-annual variations in diatom assemblages in Murray River-connected wetlands in north-west Victoria, Australia. Mar Freshw Res 53:981–992. https://doi.org/10.1071/MF01021

    Article  Google Scholar 

  • Google Earth Pro (2020). Fecha de imagen: 01/15/2015. Maxat Technologies Images

  • Hickman M, Reasoner MA (1994) Diatom responses to late Quaternary vegetation and climate change, and to deposition of two tephras in an alpine and a sub-alpine lake in Yoho National Park, British Columbia. J Paleolimnol 11:173–188. https://doi.org/10.1007/BF00686864

    Article  Google Scholar 

  • Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43(2):200–214. https://doi.org/10.4319/lo.1998.43.2.0200

    Article  Google Scholar 

  • Hollander DJ, McKenzie JA, Haven HLT (1992) A 200 year sedimentary record of progressive eutrophication in Lake Greifen (Switzerland): implications for the origin of organic-carbon-rich sediments. Geology 20(9):825–828. https://doi.org/10.1130/0091-7613(1992)020%3C0825:AYSROP%3E2.3.CO;2

    Article  Google Scholar 

  • INEGI (2010) Censo de población y vivienda. https://www.inegi.org.mx/programas/ccpv/2010/. Accessed 10 Jan 2020

  • INEGI (2020) Continuo Mexicano de Elevaciones; https://www.inegi.org.mx/app/geo2/elevacionesmex/. Accessed 1 Sep 2020

  • Ingersoll TF, Bullard RL, Ford JP, Grimm JD, Pickle SW, Sares (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. J Sediment Res 54(1):103–116. https://doi.org/10.1306/212F83B9-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Jaimes-Viera MC, Del Pozzo AM, Layer PW, Benowitz JA, Nieto-Torres A (2018) Timing the evolution of a monogenetic volcanic field: Sierra Chichinautzin, Central Mexico. J Volcanol Geoth Res 356:225–242. https://doi.org/10.1016/j.jvolgeores.2018.03.013

    Article  Google Scholar 

  • Janssen CR, Ijzermans-Lutgerhorst W (1973) A “local” late-glacial pollen diagram from Limburg, Netherlands. Acta Botanica Neerlandica 22:213–220. https://doi.org/10.1111/j.1438-8677.1973.tb00835.x

    Article  Google Scholar 

  • Lespez L, Le Drezen Y, Garnier A, Rasse M, Eichhorn B, Ozainne S et al (2011) High-resolution fluvial records of Holocene environmental changes in the Sahel: the Yamé River at Ounjougou (Mali, West Africa). Quatern Sci Rev 30(5–6):737–756. https://doi.org/10.1016/j.quascirev.2010.12.021

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:1003. https://doi.org/10.1029/2004PA001071

    Article  Google Scholar 

  • Lowe D (1982) Sediment gravity flows: Depositional models with special reference to the deposits of high-density turbidity currents. J Sediment Res 52(1):279–297. https://doi.org/10.1306/212F7F31-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Lozano-García S, Sosa-Nájera S (2015) Análisis palinológico del Cenozoico de la cuenca de México: el registro polínico de los pozos Texcoco-I y San Lorenzo Tezonco. Boletín de la Sociedad Geológica Mexicana 67(2): 245–253. Recuperado en 25 de enero de 2020, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-33222015000200009&lng=es&tlng=es

  • Lozano-García S, Ortega B, Roy P, Beramendi-Orosco L, Caballero M (2015) Climatic variability in the northern sector of the American tropics since the latest MIS 3. Quatern Res 84(2):262–271. https://doi.org/10.1016/j.yqres.2015.07.002

    Article  Google Scholar 

  • Lozano-García S, Brown ET, Ortega B, Caballero M, Werne J, Fawcett PJ, Schwalb A, Valero-Garcés BL, Schnurrenberger D, et al (2017) Deep drilling at the Chalco lake: a technical report. Boletín de la Sociedad Geológica Mexicana 69(2): 299–311. https://doi.org/10.18268/bsgm2017v69n2a2

  • Lozano-Garcı́a MS, Ortega-Guerrero B, Caballero-Miranda M, Urrutia-Fucugauchi J (1993) Late Pleistocene and Holocene paleoenvironments of Chalco lake, central Mexico. Quatern Res 40(3): 332-342. https://doi.org/10.1006/qres.1993.1086

  • Lugo-Hubp J, Mooser F, Pérez-Vega A, Zamorano-Orozco J (1994) Geomorfologia de la sierra de Santa Catarina México. Revista Mexicana de Ciencias Geológicas 11(1):13–52

    Google Scholar 

  • Macías JL, Arce JL, García-Tenorio F, Layer PW, Rueda H, Reyes-Agustin G, López-Pizaña F, Avellán D (2012) Geology and geochronology of Tlaloc, Telapón, Iztaccíhuatl, and Popocatépetl volcanoes, Sierra Nevada, central Mexico, In: Aranda-Gómez JJ, Tolson G, Molina-Garza RS (eds) The Southern Cordillera and Beyond. Geological Society of America Field Guide 25, Mexico City, 163–193

  • Márquez A, Verma SP, Anguita F, Oyarzun R, Brandle JL (1999) Tectonics and volcanism of Sierra Chichinautzin: extension at the front of the Central Trans-Mexican Volcanic belt. J Volcanol Geoth Res 93(1–2):125–150. https://doi.org/10.1016/S0377-0273(99)00085-2

    Article  Google Scholar 

  • Martin del Pozzo AL (1982) Monogenetic vulcanism in sierra Chichinautzin Mexico. Bull Volcanol. https://doi.org/10.1007/BF02600386

    Article  Google Scholar 

  • Martínez-Abarca R, Lozano-García S, Ortega-Guerrero B, Caballero-Miranda M (2019) Incendios y actividad volcánica: historia de fuego en la cuenca de México en el Pleistoceno tardío con base en registros de material carbonizado en el lago de Chalco. Revista mexicana de ciencias geológicas 36(2): 259–269. https://doi.org/10.22201/cgeo.20072902e.2019.2.1090

  • Meyers PA, Teranes JL (2002) Sediment organic matter. In: Last WM, Smol JP (eds) and Tracking environmental change using lake sediments. Springer, Dordrech, pp 239–269

    Chapter  Google Scholar 

  • Meyers PA, Leenheer MJ, Bourboniere, (1995) Diagenesis of vascular plant organic matter components during burial in lake sediments. Aq Geochem 1:35–52. https://doi.org/10.1007/BF01025230

    Article  Google Scholar 

  • Miall AD (2012) The geology of fluvial deposits: sedimentary facies, basin analysis, and petroleum geology, 4th edn. Springer, New York

    Google Scholar 

  • Mooser F (1963) Historia tectónica de la Cuenca de México. Boletín de la Asociación Mexicana de Geólogos Petroleros 15:239–245

    Google Scholar 

  • Mooser F, Nairn AE, Negendank JF (1974) Palaeomagnetic investigations of the tertiary and quaternary igneous rocks: VIII a palaeomagnetic and petrologic study of volcanics of the valley of Mexico. Geol Rundsch 63(2):451–483

    Article  Google Scholar 

  • Mora Álvarez G, Caballero Miranda C, Urrutia Fucugauchi J, Uchiumi S (1991) Southward migration of volcanic activity in the Sierra de Las Cruces, basin of Mexico?-a preliminary K-Ar dating and palaeomagnetic study. Geofísica Internacional https://doi.org/10.22201/igeof.00167169p.1991.30.2.1134

  • Niederberger BC (1987) Paleopaysages et Archeologie PreUrbaine du Bassin de Mexico: Tome I. Collection D’Etudes Mesoamericaines, Mexico City

    Google Scholar 

  • Nixon GT (1989) The Geology of Iztaccíhuatl volcano and adjacent areas of the Sierra Nevada and Valley of Mexico. Geolog Soc Am Special Papers 219:1–59

    Article  Google Scholar 

  • Ortega-Guerrero B, Newton AJ (1998) Geochemical characterization of Late Pleistocene and Holocene tephra layers from the Basin of Mexico. Central Mexico Quatern Res 50(1):90–106. https://doi.org/10.1006/qres.1998.1975

    Article  Google Scholar 

  • Ortega-Guerrero B, Lozano-García S, Herrera-Hernández D, Caballero M, Beramendi-Orosco L, Bernal JP et al (2017) Lithostratigraphy and physical properties of lacustrine sediments of the last ca. 150 kyr from Chalco basin, central México. J S Am Earth Sci 79:507–524. https://doi.org/10.1016/j.jsames.2017.09.003

    Article  Google Scholar 

  • Ortega-Guerrero B, García LC, Linares-López C (2018) Tephrostratigraphy of the late Quaternary record from Lake Chalco, central México. J S Am Earth Sci 81:122–140. https://doi.org/10.1016/j.jsames.2017.11.009

    Article  Google Scholar 

  • Ortega-Guerrero B, Avendaño D, Caballero M, Lozano-García S, Brown ET et al (2020) Climatic control on magnetic mineralogy during the late MIS 6-Early MIS 3 in Lake Chalco, central Mexico. Quatern Sci Rev 230:106–163. https://doi.org/10.1016/j.quascirev.2020.106163

    Article  Google Scholar 

  • Ortiz-Enriquez O. (2017) Petrografía y geoquímica del vulcanismo monogenético de la Sierra de Santa Catarina, Cuenca de México. Dissertation, Autonomous University of Guerrero

  • Osete ML, RuizMartı́nez VC, Caballero C, Galindo C, UrrutiaFucugauchi J, Tarling DH (2000) Southward migration of continental volcanic activity in the Sierra de Las Cruces, Mexico: palaeomagnetic and radiometric evidence. Tectonophysics 318 (1-4): 201-215. https://doi.org/10.1016/S0040-1951(99)00312-1

  • Oviedo de León A (1967) Estudio geológico del subsuelo, basado en los datos obtenidos de la perforación del pozo profundo Texcoco No. 1. Instituto Mexicano de Petróleo, Departamento de Geología y Exploración, Ciudad de México

  • Park C, Schmincke HU (1997) Lake formation and catastrophic dam burst during the Late Pleistocene Laacher See eruption (Germany). Naturwissenschaften 84(12):521–525

    Article  Google Scholar 

  • Pasteels P, Villeneuve M, De Paepe P, Klerkx J (1989) Timing of the volcanism of the southern Kivu province: implications for the evolution of the western branch of the East African Rift system. Earth Planet Sci Lett 94:353–363. https://doi.org/10.1016/0012-821X(89)90152-0

    Article  Google Scholar 

  • Perez-Cruz GA (1988) Estudio sismológico de reflexión del subsuelo de la Ciudad de México. Seismic reflection study of the Mexico City subsoil. Dissertation, National Autonomous University of Mexico

  • Picard MD (1971) Petrographic criteria for recognition of lacustrine and fluvial sandstone, PR Spring oil-impregnated sandstone area, southeast Uinta Basin. Utah Survey Special Studies 36:28

    Google Scholar 

  • Pierson TC (1982) Transformation of water flood to debris flow following the eruption-triggered transient-lake breakout from the crater on March 19, 1982. In: Pierson TC (ed) Hydrologic consequences of hot-rock/snowpack interactions at Mount St Helens volcano, U.S. Geological Survey, Information Services, Washington: 19–36

  • Pierson TC (2005) Hyperconcentrated flow transitional process between water flow and debris flow. In: Jackob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, pp 159–202

    Chapter  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rasband WS (2018) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947

    Article  Google Scholar 

  • Romero-Vera C (2019) Petrografía y geoquímica de los productos volcánicos de la base del pozo MexiDrill, cuenca de Chalco. Dissertation, National Autonomous University of Mexico

  • Rosiwal A (1898) Über geometrische Gesteinsanalysen; ein einfacher Weg zur ziffermässigen Festellung des Quantitätsverhältnisses der Mineralbestandtheile gemengter Gesteine. Verhandlungen der Kaiserlich-Koeniglichen Geologischen Reichsanstalt 5(6):143–175

    Google Scholar 

  • Sanders WT, Parsons JR, Santley RS (1979) The Basin of Mexico: Ecological processes in the evolution of a civilization. Academic Press, New York

    Google Scholar 

  • Sarocchi D, Borselli L, Macías JL (2005) Construcción de perfiles granulométricos de depósitos piroclásticos por métodos ópticos. Revista Mexicana de Ciencias Geológicas, 22(3): 371–382. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1026-87742005000300371&lng=es&tlng=.

  • Schnurrenberger D, Russell J, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29(2):141–154. https://doi.org/10.1023/A:1023270324800

    Article  Google Scholar 

  • Siebe C, Arana-Salinas L, Abrams M (2005) Geology and radiocarbon ages of Tláloc, Tlacotenco, Cuauhtzin, Hijo del Cuauhtzin, Teuhtli, and Ocusacayo monogenetic volcanoes in the central part of the Sierra Chichinautzin, México. J Volcanol Geoth Res 141(3):225–243. https://doi.org/10.1016/j.jvolgeores.2004.10.009

    Article  Google Scholar 

  • Siebe C, Salinas S, Arana-Salinas L, Macías JL, Gardner J, Bonasia R (2017) The ~23,500 y 14C BP White Pumice Plinian eruption and associated debris avalanche and Tochimilco lava flow of Popocatépetl volcano, México. J Volcanol Geoth Res 133:66–95. https://doi.org/10.1016/j.jvolgeores.2017.01.011

    Article  Google Scholar 

  • Smith GA (1986) Coarse-grained nonmarine volcaniclastic sediment: Terminology and depositional process. Geol Soc Am Bull 97(1):1–10. https://doi.org/10.1130/0016-7606(1986)97%3C1:CNVSTA%3E2.0.CO;2

    Article  Google Scholar 

  • Smol JP, Stoermer EF (2010) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sohn YK, Rhee CW, Kim BC (1999) Debris flow and hyperconcentrated flood-flow deposits in an alluvial fan, northwestern part of the Cretaceous Yongdong Basin Central Korea. J Geol 107(1):111–132. https://doi.org/10.1086/314334

    Article  Google Scholar 

  • Sosa-Ceballos G, Gardner JE, Siebe C, Macías JL (2012) A caldera-forming eruption~ 14,100 14C yr BP at Popocatépetl volcano, México: Insights from eruption dynamics and magma mixing. J Volcanol Geoth Res 213:27–40. https://doi.org/10.1016/j.jvolgeores.2011.11.001

    Article  Google Scholar 

  • Talbot MR (2001) Nitrogen isotopes in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. 2nd edn: physical and geochemical methods. Kluwer, Dordrecht, 401–439

  • Talbot MR, Lærdal T (2000) The Late Pleistocene-Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. J Paleolimnol 23(2):141–164. https://doi.org/10.1023/A:1008029400463

    Article  Google Scholar 

  • Tavares AC, Borghi L, Corbett P, Nobre-Lopes J, Câmara R (2015) Facies and depositional environments for the coquinas of the Morro do Chaves Formation, Sergipe-Alagoas Basin, defined by taphonomic and compositional criteria Brazilian. J Geol 45(3):415–429. https://doi.org/10.1590/2317-488920150030211

    Article  Google Scholar 

  • Telford RJ, Barker P, Metcalfe S, Newton A (2004) Lacustrine responses to tephra deposition: examples from Mexico. Quatern Sci Rev 23(23–24):2337–2353. https://doi.org/10.1016/j.quascirev.2004.03.014

    Article  Google Scholar 

  • Torres-Rodríguez E, Lozano-García S, Roy P, Ortega B, Beramendi-Orosco L, Correa-Metrio A, Caballero M (2015) Last Glacial droughts and fire regimes in the central Mexican highlands. J Quatern Sci 30(1):88–99. https://doi.org/10.1002/jqs.2761

    Article  Google Scholar 

  • Van de Kamp PC (2010) Arkose, subarkose, quartz sand, and associated muds derived from felsic plutonic rocks in glacial to tropical humid climates. J Sediment Res 80(10):895–905. https://doi.org/10.2110/jsr.2010.081

    Article  Google Scholar 

  • Vos PC, De Wolf H (1988) Methodological aspects of paleo-ecological diatom research in coastal areas of the Netherlands. Geol Mijnbouw 67(1):31–40

    Google Scholar 

  • Weltje GJ (1994) Provenance and dispersal of sand-sized sediments: reconstruction of dispersal patterns and sources of sand-sized sediments by means of inverse modelling techniques. Utrecht University, Netherlands

    Google Scholar 

  • Whitney BS, Mayle FE (2012) Pediastrum species as potential indicators of lake-level change in tropical South America. J Paleolimnol 47(4):601–615. https://doi.org/10.1007/s10933-012-9583-8

    Article  Google Scholar 

  • Zhong W, Wei Z, Chen Y, Shang S, Xue J, Ouyang J et al (2017) A 15.4-ka paleoclimate record inferred from δ 13 C and δ 15 N of organic matter in sediments from the sub-alpine Daping Swamp, western Nanling Mountains South China. J Paleolimnol 57(2):127–139. https://doi.org/10.1007/s10933-016-9935-x

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by: UNAM DGAPA-PAPIIT IV100215 and IN105918, the International Continental Scientific Drilling Program (ICDP Project 05-2014), the US National Science Foundation (NSF-EAR1551311, NFS-EAR1803725), the CONACYT National Scholarship Program (CVU/Student: 854008/629653). Special thanks to the local authorities of Ejido Santiago Tulyehualco and the MexiDrill Team, who assisted with many aspects of the field work. We thank the LacCore staff and others who helped with sediment analyses: Susana Sosa Najera, Cecilia Caballero, Ana Ma. Soler, Sandra García León, Elena Royo, Raquel López, Cinta Osácar and Jaime Díaz Ortega. Rodrigo Martínez thanks UNAM’s Academic Writing Program for its guidance in the preparation of this manuscript. We appreciate the comments and corrections of Dr. Mark Brenner and an anonymous reviewer that improved the early manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Ortega-Guerrero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Abarca, R., Ortega-Guerrero, B., Lozano-García, S. et al. Sedimentary stratigraphy of Lake Chalco (Central Mexico) during its formative stages. Int J Earth Sci (Geol Rundsch) 110, 2519–2539 (2021). https://doi.org/10.1007/s00531-020-01964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01964-z

Keywords

Navigation